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Abstract. It is well known that the Weyl transformation in a phasespace1R21,
transforms the elementsof,9°(1R21)in trace class operators and the elementsof
L2(1R21) in the Hubert-Schmidtoperators of the Hubert spaceL2(1R1); this fact
leads to a generalmethodof quantization suggestedby E. WignerandJ.E. Moyal
and developedby M. Flato, A. Lichnerowicz,C. Fronsdal, D. Sternheimerand
F. Bayen for an arbitrary symplecticmanifold, known underthe name of star-
-product method.In this context, it is important to study the Weyltransforms
of the tempereddistributionson thephasespaceand thatof thestar-exponenrials
whichgivethespectrumin this processofquantization.
We analyse here the relations betweenthe star-product,the twistedconvolution
product and the Weyl transformation of tempereddistributions. We introduce
symplecticdifferential operatorswhich permitus to studythestructureofthespa-
ce~ X �~0, (similar to thespace&~)of theleft (twisted)convolutionoperators
of,92(1R21)which permit to definethe twistedconvolution productin the space
,92~(fl~2!) and thestructuresof theadmissiblesymbolsfor theWeyltransformation
(i.e. the domain of theWeyltransformation).Weprovethat theboundedoperators
o.f L2(IR’) are exactly the Weyltransformsof thebounded(twisted)convolution
operators of L2(1R21). We give an expressionof the integral formula of the star
product in termsof twistedconvolutionproductswhich is valid in themostgeneral
case. The unita,y representationsof the Heisenberggroup play an important
rolehere.
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INTRODUCTION

The Weyl transformationis a one-to-onemappingf-÷op (f) of a largefamily

of functions or distributions (including polynomials) on the phasespace1R2’ =

= {q
1. p1}, 1 ~j ~ 1 of a non-relativistic systemwith / degreesof freedomonto a

large classof operatorsof the Hilbert spaceH = L
2(1R1), including thosewhich

are Hilbert-Schmidt (The Hilbert-Schmidt operatorsare the Weyl transformsof

thesquareintegrablefunctionson the phasespace),suchthat:

h 3
op(l)=l, op(q

1)=q1. op(p1)=————.

TheWeyl transformis a usualquantizationprocess.

The star product fog of two functions or distributionsf andg on the phase

spaceis the symbol of theoperatorop (f) op (g) (when defined).As shown by

J.E. Moyal, the commutator for the star productappears(at leastformally) as

an asymptotic expansionwhich is a deformation with parameteri(h/2) of the

Poissonbracketon the phasespace.This fact leadsto considerquantummechanic

as a theory on the spaceof functions or distributions over the phasespace.

The equationsof motion in the Heisenbergpicture are then obtainedfrom the

classical equationsof motion by using that deformationof the Poisson bracket

(see [1]). In this context, M. Flato, A. Lichnerowicz, C. Fronsdal,D. Sternhei-

mer and F. Bayen haveconstructeda new quantizationprocesson an arbitrary

symplectic manifold by consideringdeformationsof the ordinary product and

of the Poisson bracket of the symplectic structure. They havecomputed the

spectrum of some Hamiltoniansby consideringa Fourier-Dirichlet expansion

of their star-exponentials.

In this paper, we study propertiesof the Weyl transformation which relates

the usual quantization processand the star-product method in the caseof the

phasespaceJR
21 and of the twisted convolution productnoted *, which is the

Fourier transform of the star product. Many authors have been working on

these questions. Nevertheless,many problems were not solved, in particular

the determination of the domain of the Weyl transformation(what we call

the space of the admissible symbols, which is not the space&~,as we show

in section 7). the characterizationof the symbols of the boundedoperators
on the 1-lilbert spaceWI, the determinationof the structureof the left convolu-

tion operatorsof ~9°(JR21)(introduced by M.A. Antonetsin order to define the

twisted convolution product in the space~/2~(lR2l)) and the structure of the
admissiblesymbols.

In section 1, we recall the usualdefinition of theWeyl transformation.
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ln section 2, we show that the Weyl transformationis in fact a one-to-one

mapping from the space~/‘(lR2s’)onto thespace2~(~9”(IR1)..~f’(lR1))of conti-

nuous linear mapsof J(1R1) into ~/9(JR~’)~We call admissiblesymbolsthe ternp~-

red distributions T of St’(1R2) such that op (T)(9i2(IR1)) C 11-I = L2(1R1). i.e.

thosethat give operatorsin theHubertspaceWI.

In section 3. we introduce a new kind of differential operatorsthat we call
sl’mplectic differential operators. Thesedifferential operatorswill permit us to

treat the twisted convolution product in a mannersimilar to that used for the

ordinary convolution product, and will permit us to determinethe structures

of the left convolution operatorsof .~/(lR21)and of the admissiblesymbolsof
theWeyl transformation.

In section4, we study the Fourier transformsof twisted convolution products

and we give an integral formula for the starproduct in termsof twisted convolu-

tion products,which is valid in the most generalcase.We see in particularin this

section, that the Fourier transformof a twisted convolution product for X ~ 0

is no more an ordinary productof functions, but a twisted convolution product

for l/X. The notion of space ~ is thuslost in this case.

In section 5. we study the structuresof the left convolution operatorsof

,f(lR21). We obtain a theorem of structure similar to the theoremof structure

of the space (9~,where the ordinary differential operatorsare replacedby the
symplecticones.

In section 6, we study theWeyl transformsof the left convolution operators

of .9~(lR21).We give a characterizationof the admissiblesymbols in terms of

twisted convolution products and the structureof these symbols.The admissi-

ble symbolsarein fact squareintegrable functionson the phasespaceandfinite
sums of symplecticderivatives of squareintegrablefunctions.We introduce the

notion of bounded(twisted) convolution operatorsof thespaceL2(1R21)andwe
show that the boundedoperatorsof the Hilbert spaceWI = L2(lR1) aretheWeyl

transformsof theseboundedconvolution operators.

In section 7, we give somepractical applications of these results. We show

in particular that the Weyl transformsof the star exponentialsof the homoge-

neouspolynomials of degreetwo on the phasespacegive rise to one-parameter

groupsof unitary operators.

1. GENERAL RESULTS AND NOTATIONS

Let E = 1R2’ be the phasespaceof a nonrelativistic quantum system with /

degreesof freedom, whose points are denoted by: .v = (q
1. pt). 1 ~j ~ / or x =

= q + p. Let w = ~ dq1 A dp1 be a symplectic form on E and let dM(x) =
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= (2~)ldq ‘dp be the measureassociatedwith the symplectic form w. Let
us consider the Weyl group associatedwith E (see [2]), W = E x JR endowed

with the compositionlaw:

(x
1, s1)(x2,~ = (x1 + x2, ~ + s2+ 1/2 w(x1,x2))

Let usnote that this group is isomorphicto the Heisenberggroup.The Lie algebra

w of this group is isomorphic to the space E x JR endowedwith the Lie bracket:

[(x1,~ (x2, s2)] = (0, w (x1, x2))

andwe have:exp (x, s) = (x, s).
The center of the Weyl group is the set of elements(0, s); and with every

nonzero real numberh is associatedan equivalenceclassof irreducibleunitary

representationsof theWeyl group,satisfyingthe formula:

7r(0, s) = exp (— is/h) I.

Let us considerthe symplectic Fourier transformationin the space~9”(E) of

infinitely differentiablefunctions,rapidly decreasingat infinity (see[51),defined

by:

= ~(x) =fe (X,y) . ~(y) d~C).

Then ~ = ~ and this Fourier transformationcanbe extendedto an isometry

of the spaceL
2(E, i~)of square-integrablefunctions with respectto themeasure

ji onto itself. The symplectic Fourier transformof the tempereddistribution T

of Sf”(E) is definedby: (.~T, ~) = (T, ~ where ~(x) = p(—x). Let us note

that:(~pY =

REMARK. To every locally integrablefunctionf(x) in E is associatedthe measure
f(x) .d~(x)

TheWeyl transforms(see [1] and [2]) of thefunctions~ of .9°(E)arebounded

operators of WI, defined by op (p) = .1 ~(x) ir(—hx, 0) d~z(x),where sr is an
irreducible unitary representationof W, associatedwith h sLr 0. The starproduct
po s/i of the functions p and i/i of.9°(E) is definedby (see [1]): op(po i/i) =

= op (p) . op (i/i) and we have: ~ ° = ~ h/2 i/i, where denotesthe
h

twistedconvolutionproductassociatedwith -~
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Let us note that these notationsmay be different from thoseused in the

referencesquoted in this paper.The usualnotationsin distribution theoryused
in this paper are thoseof [12]. Unlessexplicitly mentioned, the signs S~and
~will denotethroughthis paperthe symplecticFouriertransformation.

2. WEYL TRANSFORMS OF TEMPERED DISTRIBUTIONS

Let ir be an irreducible unitary representationof the Weyl group,belonging

to the equivalenceclass associatedwith h ~ 0. Let us denoteby Il-I the Hilbert

spaceof this representationand by lU,,, the spaceof differentiablevectors. Let
us set:x~~(x)= (ir(—hx, 0) Ui u) for u and v in WI, where (I) denotes the

scalar product in WI. Let us denoteby u lithe norm of the vectoru of WI. We
havethe lemma:

LEMMA 1.

I) For all vectors u and v of WI, the coefficient~ belongsto L2(E) and

satisfiestile formula:

(1) fixu.
5(x) 2~) = Ih l~liu1211v1l2

2) For all vectorsu and vofJH, tile coefficientx~,0belongsto .9°(E).

Let us consider on WI,,, the topology defined by the family of seminorms
(see[7]):

(2) pq,(u)=lidir(d//)ull

for all ~1 belonging to the universalenveloping algebraof w, where dir is the
differential of ir. Then, lU,, is isomorphic to ,9°(JR’)and u,U—* x05 is a conti-
nuousbilinearmapof lU,, x WI,,,, into ,9’(E).

We can now definethe Weyl transformof a tempereddistribution TE 5’
71(E)

by settingfor all u, v E Il-I:

(3) (op(fluiv)=(T,x~~>.

Let us note that H beingisomorphic to ,9~2(lRl)(for the structuresof topologi-

cal vector spaces),its dual spaceJUL is isomorphic to ,q7 ‘(IR’) and we set for
fE ,9°’(IR’)and u E .q’(JR’) : (fl 11) = (f. 17). We havethe proposition:

PROPOSITIONI. The Weyl transformation is a one to onemappingot tile space

~9°’(E)of tempereddistributionsin E onto tile space~99(JH,,,,JIlL) ofcontinuous
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li,iear mapsof WI,,, into its dual WIL.

DEFINITION I. A tempereddistribution Tof,~’(E) is cal/edan admissiblesi’mbol

for theWevitransformation if op (fl(H~) C lI-I.

Let us note that WI beingisomorphic to L
2(IR’). isasubspaceof JIlL. By using

the closedgraphtheorem(see[131, chapter17), we seethat, if Tis an admissible

symbol, then op (T) is a continuouslinearmap of il-I,,, into WI. So, we havethe

proposition:

PROPOSITION2. The We,/ transformation establishesa one to one mapping of

the spaceof admissiblesimbo/sonto thespace£0(JI~I,,,,WI) of continuouslinear

mapso.f WI into H.

In particular, ei’erv boundedoperator of 11-I is the Weil transformof on/vone

admissiblesymbol.

Proof Let usnow provelemma 1 andproposition 1. Sincethecoefficientsoftwo

unitary equivalent representationsare equal and since for suchtwo representa-

tions, thereis a one to onecorrespondencebetweenthe spacesof differentiable
vectorsof theserepresentationswhich is a topologicalisomorphismfor the topo-

logies induced by the seminorms(2), we can considerthe representationof W
on the spaceL2(JR~’)equippedwith the scalarproduct:(u lv) = j’u(q’)v(q’)dq’,

(dq’ is theLebesgue’smeasureon IRE), definedby:

[ i qp ]
(4) 7r(x~s)u(~’)=exP~~.__~+__+P~’jU(~’+~)

where x = q + p, qp = ~ q
1 p1. The spaceof the differentiable vectorsof this

representationis ~/(lR
1) (see[7]) and by usingthe remarkfollowing the theorem

XVIII (chapterVI, p. 1 90) of [12], it is easyto prove that the topologydefined
by the family of seminorms(2) is identicalwith the usual topologyof //‘(IR’).

Then,foru anduEL2(IR1)we have:

x~,~(x)=exp(_i ~ qp) fei~ ‘u(q’ —hq)v(q’)dq’.

From the propertiesof the partial Fourier transformation(with respectto q’),

we deduce formula (1). Furthermore,let us consider the topological isomor-

phism ~‘ of S/’(E) onto itself definedby:
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h (
(5) ~‘~(q,p)=exp —i —qp ~‘P~ ‘~(q’—hq,q’)dq’

,) )

we haveX~,= ~7(u u U). The proofof lemma I is thencomplete.
Furthermore, it is clear that u. iY—~’ is a continuous bilinear map of

,9°(IR’)x ~9”(IR~’)into Y’(E). Proposition 1 is easily deducedfrom the formula
(T, x~ = (I ~‘(T), u ®iJ) where ~‘ is the transposeof ~7, by noticing that

,9°(IR1)is a nuclear Frechet spaceand by using the proposition50-7 and the

corollary of theorem51-6 of [13]. Let us note that ~ (T) is the kernelof the
operatorop (T). •

We deducefrom the proposition 50-4 of [13] the topological isomorphism:

q2~(~l) ~L2(JR’) = ~~(,Sf(JR1),L2(1R1)).

Then, we havethe corollary:

COROLLARY 1. The admissible symbolsfor the Wevl transformation are tile

temnpereddistributions in E whosekernelsbelongto ~ ‘(1W) ~ L 2(JR1)

3. TWISTED CONVOLUTION PRODUCT

The twisted convolution of two functions f and g in E, defined for every

realnumberX by:

f* g(x) =fe_xY) ‘f(x —y)g(y) dp(y)

was introducedin [4] Let us note for every indexJ = /~):IJI = rand

D~=
3x. . .. 3x.

‘I

It will be very useful to introducethe symplecticdifferential operatorsassocia-

ted with the realnumberX and definedby:

LAv,(x) = — + iXo., (e.,x) p(x)
/ ax

1 /

and L,,’~= L~ . . . Lx~where (x.) is a coordinatesystemwith respectto a basis
1~. /

(e1) in E. Let us notethat the differential operatorsL’ do not commuteingeneral.
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If T E ~‘(E) and p E ~(E) (resp.T E ,~f’(E)and p E Sf(E)), we have:

(L,~T,~’)= (— l)’~’(T,Ly~)

where ‘~‘ = (1r 1~) iff = (/p~~’

Thesesymplectic differential operatorswill permit us to treat the twisted
convolution product in a mannersimilarto that used for the ordinary convolu-

tion product. It seemsthat thesedifferential operatorsshouldplay an important

role in generalizations to other groups.

LEMMA 2. For everyreal numberX ~ 0, wehave:

(6-a) Lj~= D~+ ~ a~(x)D5
~sI<IJI

(6b) D~L,~+ ~ L~b5(x)
IsI< Jl

(6-c) D~=L,,~+ ~ C~(x)L~
IsI< IJ

whereas(x), b5(x)andC5(x) are polynomialsofdegreenotgreater thanl~I.

Proof Indeed, the first formula is easily obtained by induction. To obtain

the secondand third formulas, let us first note that if c~E ~(E) and T C ~

we have:

LX(cT)=aLXT+ — T
/ /

and the formulas(6-b)and(6-c) arethenobtainedby induction. U

It is easy to show that, for every real number A, an infinitely differentiable
function ~ in E belongs to ,9

5’(E) if and only if, for every nonnegativeinteger

randeveryindexJ:

(7) p~,(p)=su~(1 +lixli2)nlL,~p(x)l<+oo

and it is easy to prove by using lemma 2, that the topology defined on,~f(E)

by theseseminormsis identicalwith the usual topologyon St (E).

The twisted convolution(with respectto A) of two distributionsS andT, one
of them at least having a compact support, is defined for pC ~(E) by (see[5]):
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(8) (S * T, ~p)= (S(x),0(x)),

with:

0(x) = (T(y), e~’~ ~(x + y)).

To define this twisted convolution product inS/”(E), it is sufficient that the

mapping p —~ 0 becontinuousof Y’(E) into itself. This propertyis easily verified

if T=fE St(E), sincewe have in this case:0 =f* p and since the twisted convo-
lution of two functionsof St(E) is continuous.Then,if SE St’(E) and fe St(E),

thetwisted convolutionS ~f is detinedandwe havethe proposition:

PROPOSITION3. If S belongstoS/”(E) andf belongstoSf(E), then S * f belongs
to &M(E) and is givenby:

(9-a) S *f(x) = (S(y),~ ‘f(x —y))

andsatisfies theformulas:

(9-b) L,,x(S*f)=(L,,XS)*f -

(9-c) LJX(S*f)=S*L~f

Proof Indeed,we have:

(S *f, ~)= (S(x)~Je_ (x,y) ‘f(y —x) ~(y) d~(y))=

=f~(Y)(S(x),e_~~~ f(y—x))d~(y).

To justify the preceding inversion under the integralsign, it suffices to note

that:

L~(e_~~x3))~f(y —x)) = —e~’~ . (Lf)(y —x)

and that in view of the theoremVI (chapter VII) of [12] and in view of Lemma

2, formula (6-b), every tempered distribution can be written in the form:
S = E Lj?~((1 + lix 12yk h~(x))(finite sum), where the functions h,, are conti-

nuous and bounded. Wethen obtain:



240 3M. MAILLARD

(S *f, ~)= ~ f(l + lix i12)khj(x)dp(x)f e_i~(x,Y)‘(L~f)(y —x)~(v)dp(y).

So as to inversethe orderof integration,let us note that we havefor all integers

r, 5 ~e 0:

(1 +lixIl2)k
1(1 + lix ~~2)khj(x)((LyXf)(y—x))~(y) ~ Kr

~ (1 +~v—x ll2Tl ~ll~il2)~

and then,let us usethe following lemma(see [3], lemma2.3.2, p. 113):

LEMMA3. For all vectorsx andyofE, wehave:

(1 + lix + y ii2~1<2(1 + lix 1l2)±‘(1 + Ily 112).

We deduce from this lemma that the precedingquantity under the integral

sign is majorized by 2rkrs(l + lix ll2)/c_~J+ ily 112)r_t, which is summablefor
sufficiently large values of r and s —r. A similar computation shows that

S *f~ (9M(F4.
We obtain the formula (9-c)by writing:

L~(S*f(x)) = (S(y), ~ .(L
7kf)(x —y)).

To obtain the formula (9-b), let us first note that:

L~(e~’~ ‘f(x —y))= ~ ‘f(x —y))
/ I

andthen, let us write:

LJX(S* f)(x) = — (S(y),L(e~’Y~ . f(x —y))) =

=(L~S(y),e~”~‘f(x—y)).

PROPOSITION4. The twisted convolution S ~f is hypocontinuousofS/”(E) x
x S/(E) into SJ”(E).

Proof This proposition follows from the formula (S * f, p) = (5, f * p), by

using the continuity of the twisted convolution product in //‘(E) and by using

the fact that every bounded set of .f/’(E) is equicontinuous.

Following [6], let us introducethe space~‘9~(E)of left convolution operators

of S/’(E).
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DEFINITION 2. Let A be a real number. The space (9~(E)of left convolution

operators of St (E) is the set of the tempereddistributions T in E such that

T * ~ belongsto St (E) for even’function ~ of St(E).

Let us set for T C St’(E), ~ C .~/(E)and Il CE:

Th~c(x)= ~(x —h), (rhT, ~) = KT, ~

Then we havetheproposition:

PROPOSITION 5.

1) A temnpereddistribution T in E belongsto (9 jE) if and on/v if for ci’cri

nonnegativeintegerr, tile setof tile distributions 7,, /1 C E, where:

~(x) = (1 + i~iH~r~[e~’~ . T(x)]

is a boundedsetof St’(E).

2) For deny distribution T of (f~(E),tile map ~ - T * ~ is continuousofSt(EI

into itself

Proof Indeed, if T C C ~(E), we have for every integerr ~ 0 andeveryfunction

p of 51(E):

sup (I ~

xEE S

It follows that for everyfunction~pC 51(E), we have:

sup (1 + ~112r I (T~(e~’ T~). ~(y)) < + ~.

xv E

It follows therefore that the set of thedistributions T~.x C E, being weakly

houndedin St’(E), is strongly boundedin S/’(E).
Conversely, let us supposethat the set of the tempereddistributions T~.x C E

is a boundedset of.f’(E), then by replacing p by Lf~Oin theprecedingformula

and by using the formula (9-c) of proposition 3, we obtainp~j’(T* ~) < +

where p~j~is defined by formula (7). It follows that TC (9~(E).Futhermore.

the set of the distributions T~.x CE being equicontinuousin.~1’(E).we see

that tends to zero if ~ tends to zero in.f(E). Proposition 5 is then

proved. •

REMARK. TC (9~(E)if and on/i- if TC (P~(E)and wehate: (T * = T *

If TC l9~(E)andSCJ’(E). then S * T is defined. If one at least of these

distributions have a compact support, the expressionsS(.v) and T(i) can be
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exchangedin the right hand side of formula (8). so, in the generalcase,we are
led to introducethe space of right convolutionoperatorsof51(E) (with respect

to A). Let us note that p * S = S * p; then it follows that the right convolution
operatorsof51(E) forA, arenothingelsebut the elementsof (9’~(E).IfS C

andTE51’(E),thenS~ Tis still definedandwe have:

(10) (S * T, ~) = (T~,(S(x),e5~’~~~c(x + y))).

So, we havethe theorem:

THEOREM 1. LetS and T be two tempereddistributionsin E, suchthat S belongs

to (9’~(E)or Tbelongsto c9~(E),thenS * Tis definedandsatisfiestheformulas:

I) (S* T,p)= (5, T*p)=(& T*~)ifTE(9~(E)

2) ~
The right hand sidesof theseformulasbeingequalif simultaneouslyS belongsto
(9’~(E)and Tbelongsto

Proof Indeed, it suffices to prove that the right handsides of formulas(8) and

(10) are equal if simultaneouslySE (9’
5(E) and Te (9~(E).This fact is easily

shown if one of thesedistributions belongsto51(E), it suffices in this caseto

considerthe structureof the tempereddistributions (see [12]). In the general
case,we will use the following lemmas:

LEMMA 4. Existenceofan approximationof the identity in thealgebra(51(E), *).

Let (~) be a sequenceof functions of~(E)such that, for everynonnegative

integer n :p~~’0, p~(x)= 0 if ix II> 1/n and fp(x) dp(x) = 1. Then,for ever.j’

function pof51(E),thesequence(~ * p) convergesto p in 51(E).

This lemma is proved in a mannersimilar to that used in the caseof the usual

convolutionproduct,by usingformula (9-c).

LEMMA 5. Let (~) be a sequenceoffunctionsof ~ (E) satisfyingthehypotheses
of lemma4, then for every tempereddistribution Sandeveryreal numberA, the

sequence(S * ~) convergesto Sin 51’(E).

The proofof this lemmais an immediateconsequenceof lemma 4 and of the

factthat every weaklyconvergentsequencein 51‘(E) is stronglyconvergent.

LEMMA 6. Let S be a tempereddistribution in E and let p and s/i be two func-

tionsof 51(E), thenfor everyreal numberA, wehave:
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(S * ~p)* s/i =S* (p * s/i).

The proofof this lemmais obvious.
Let us now returnto the proof of theorem1. LetSC (9’

5(E) and TC (9’5(E)

and let (~) be a sequenceof functions of~(E)satisfyingthe hypothesesof

lemma 4. Then accordingto lemma 5, (S*~, T*~) tends to KS, T*~) as n

tendsto infinity. Furthermore,this first expressionis equalto (T, (S *~o~)~

sinceS*p,7 C51(E);thenaccordingto lemmas4 and 6 and to proposition 5,2),
this last expressiontendsto (T, 5 *~~).Theorem 1 is then proved. U

PROPOSITION 6. If T belongsto (9~(E),then LJ~
5Tbelongsto (9~(E);and if T

belongsto (9~(E)or ifS belongsto (9’
5(E), we hate:

1) L1
5(S*fl=(L7S)*T

2) L
7

5(S*fl=S*L
7

5T

3) (L
7S5) * T = S * L~T.

This proposition follows from proposition3 andfromthe formula(L7
5 T) ~ p =

= T * L~pfor ~pC51(E),which is easyto prove

REMARK. If TE &~(E).then T, and P(x)T belongto (9~(E),whereP(x)
a _____

is a polynomial. Furthermore, T and T* (T*(x) = T(— x)) belong to

andwe have:S * T = 7’ * = *

S S —x

PROPOSITION 7, The twisted convolution (for A) of tempereddistributions is

definedif all of them,exceptat mostoneof themdenotedbyS.belongto

thesebeing on the right side of S belongingto (9~(E),theother onesbelonging
to (9

5(E). When it is defined,the twistedconvolutionoftempereddistributions

is associative.

Proof The provethe associativity,we needthe following lemmas:

LEMMA7.
1) If S and T belong to (9~(E),then S * T belongsto (9,~(E):and for even’

function p of51(E), wehale:

S*(T*~)=(S*fl*~.

2) Similarly, if S and T belong to (9’~(E),we havefor everyfunction ~ of

51(E):

(~p*S)*Trr~p*(S*T).
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Theproofof this lemmais obvious.

LEMMA8. If S belongsto &~(E),T belongsto (9’
5(E) and p belongsto,51(E),

wehave:

(S * p) * T = S * (~* fl.

Indeed, let us use an approximationof the identity in.51(E) (see lemma 4).

then5 ‘1’ ~p,7and p * T belongto51(E).By using lemma6 for A and— A, we obtain:

= [(S *~) * ~] * T= [5* (~ * p)] * T.

Lemma 8 is then obtainedby taking the limit as n tends to infinity, with the

help of lemma4 and proposition5.2).
Let us now return to the proof of proposition7, Let us considerfor example

the case: S~C (9’5(E), ~2 C (9~(E)and SC 51’(E). Thenby using theorem 1,

we obtain:

~(~l ~ ~5,S2)5,2~1)

on onehandand:

(S ~ ~2~’ ~> = ~S ~ S~~ ~ S~)= (5, s2 * (~*)

on the otherhand.
We thenuse lemma8 to completetheproof.

4. FOURIER TRANSFORM OF THE TWISTED CONVOLUTION PRODUCT.

INTEGRAL FORMULA OF THE STAR PRODUCT

Let us set for every real numberA ~ U and for every TE51’(E) : T
5(x) =

= IA 21 ‘T(Ax). Let us note that (T5,~) = (T(x), ~(~))if ~CSt(E). We have

the lemma:

LEMMA 9. For every tempereddistribution T in E, everyfunctionp of51(E) and

everyreal numberA ~ 0, wehave:

T*~(x)= T
1~(Ax).

Proof Indeed,we have:
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andlemma9 is obtainedby replacingx by Ax,

PROPOSITION8. Let A be a real numberdifferent from zero, then T belongsto

(9~(E)if and only if Tand ~ belong to &
15(E),~and if T belongs to

or ifS belongsto (9’5(E), wehave:

,~(5*fl—5I/

5* T=S T’1~.

Proof Indeed, according to lemma 9, TE (9~(E)if and only if TC (9
15(E)

andunderthis hypothesiswe have:

(~(S * T~,~) = KS, T * ~) = (~(x),~ ~ ~(Ax)) = (5_u1S,T ~

(The formula (T
5)’~’= T5 has beenused).The first equality in proposition 8 is

obtained.Then, writing this first result in the form:

~(T* ~)= T115
1~~ for ~C 51(E),

we see that T belongs to &~(E) if and only if T’
1~and therefore also T’1~

belongto &
15(E), andif TC lP~(E)we have:

(~(S * T), ~) = (5, ~(T * ~)) = (5, T~ ~ ~) = (S T 1/s

A similar computation is doneif T~(9~(E),by usingthehypothesisSC

Theproof of proposition8 is then complete.

We deducefrom proposition 8, that the star product S o 7’ is defined if S C

C (9’ 2111(E)or if T C (9~,(E). andwe havethe proposition:

PROPOSITION9. Integralformu/a of thestarproduct.

IfS and T are two temnpereddistributions in E suchthat Sbelongsto
or Tbelongsto (

9~/h(E),thenSo Tis definedandsatisfiesthe formulas:

(So 7’, ~ = ~ 2/h T (~y2/h)

221 1 i
(SoT,~)= — <5(x), <T(y).I exp 2— w(x—z,y—z) ~(z)dp(z)>~

Ii. J h

In thesecondformula, 5(x) and Ta’) canbe exchanged(or mnustbe exchanged)

ifSbelongsto (91
2/h(E).
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Proof Indeed, according to proposition 8, we have:
(So7’, P) = (~F(Sh12 ~‘ P) = ( ~S, T

1~~‘)=

= ~ ~)) = ~, r (~-2/h)
If T~(9~/h(E),this formula becomes:

(SoT, ~>= (~)
2~S(x),<T(y), exp2 — w(x~Y)fexP~—2— w(x_y,z))~z)d~(z~>~

Then, let us note that w(x,y) — w(x — y, z) = w(x — z,y — z) and the proof

is complete.

5. STRUCTURE OF THE DISTRIBUTIONS OF THE SPACE (9~(E)

To study the structureof the distributions of (9~(E).we will use a lemma

similar to the theoremXXII (chapterVI) of [12].

LEMMA 10. Let A be a real numberand let B’ be a boundedset ofdistributions
of~’(E),then for everyopen subset fl of E with cornpact closure, there is a

positive integer m such that, for everyfunction aOf~m(E)with compactsupport
contained in the unit ball of E, the set of the distributions * a, C B’, is

equalon ~2to a uniformly boundedset ofcontinuousfunctions.

Proof We give here a direct proof of this lemma. Indeed,fZ is containedin

the ball B(0, R) with centerat zero and radius R > 0, and thereis an index J

suchthat the distributions of B’ areequal on B(0, R + 1) to D~f, where the

functions f are continuous with compact support in B(0, R + 2) and uniformly
majorized by a positive number M (see [12], chapterIII). Then if m ~ for
every aE~m(E)with compact support in B(0, 1) and for every pE~(E)with

compact support inB(0,R), we have:

(~* a, ~) = (— l)~f~(x)d~(x)fDj(e_15 x,y) . a(y —x)) . ~(y) dp(y).

Weobtain for x in B(0, R)

* a(x) = (— l)~h1f~(Y)D~(e15~M ‘a(x —y)) dp(y)
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it follows that * a(x) is continuouson B(U,R) and that for x in B(0, R):

IT * a(x)l<Ml1(B(0,R + 2)) - sup ID ~(e1XXY)a(x_y))~. U

I ~ x ‘~.R .1 y h E R ‘~2

THEOREM2. Let A be a real number and let T bea distribution of ~‘(E). then

thefollowing threepropertiesare equivalent:
1) TE(9~(E)

2) T*~C,51(E), V~C2~(E)
3) Foreverynonnegativeintegerr, Tcan bewritten in theform:

f~(x)
T = ~ L7

5 (finite sum),
(I +11x112)r

where thefunctionsf~are continuousandboundedon E.

Proof Indeed, in view of the definition of (9~(E).1) implies 2). Furthermore,

it follows immediatly from 3) that TCSI’(E) and that T* pES/’(E) for every

p C 51(E). So theassertion:3) implies 1) is proved. Let us prove now that 2)

implies 3). As in the proof of proposition 5, it follows from 2) that for every

integerr> U, thesetof thedistributions Th. h C E, with

T~(x)= (1 + h 112rrh [eiXw(h, x),

is a boundedsubsetof ~‘(E).

By using lemma 10, we see that there is an integerrn > U suchthat, for every

function aC ~m(E) with compactsupportin B(U, 1), thesetof the distributions

* a, h CE is equal on B(0, 1) to a set of continuous functions, uniformly

majorizedby a positivenumberM.Let usnote that:

[r~(e T(x))] * a = rh[e T* a(x)I

then for every h CE. the distribution (1 + h iI2~~e~5~’~’~T ‘I’ cs(x) is equal

on B(h, I) to a continuous function majorized by M. It follows that T* a is a
continuousfunction onE which satisfiesthe formula:

sup (1 +Iixli2yiT*a(x)l<M.
xEE

Furthermore, we deduce from the formula (VI,6,22, p. 191) of [12] that

there is a sufficiently large positive integerk and that there are a C ~‘~‘(E)

and ~C ~(E) with compact support in B(0, 1) such that 5~a— = ~. Let
us use now the formula (6-b) of lemma 2, we obtain:~ = ~ Lj5(P~(x)a(x)).

where the functionsP~(x)are polynomials,then the functionsP~(x)a(x)belong
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to~m(E)andwe have:

T=T*~=

Let us use now proposition 6,2), which still holds for the convolution in~’tE).

Theorem2 is then proved. •

REMARK 1. The space E’(E) of distributions with compactsupport in E is con-

tained in (9~(E)for everyreal numberA. The space .~(~‘(E))and in particular

the space of polynomialson E are containedin (9~(E)for every real number

�r 0.

To see that, it suffices to consider the structure of the distributions of ~‘(E)
(see[12], chapterIII) andto apply theorem2 and proposition8.

REMARK2. The spaceof infinitel,v differentiablefunctionsin E such that there
is a positive integerm (dependingfrom a but not from the index J), sucht that

for every index J, we have: D~a(x)~ A,(l + lix 112)m, is containedin (9~(E

for everyreal numberA ~ 0, as well as theFourier transformsof thesefunctions.

Proof Indeed, it suffices to use the following formula which holdsif we use a
canonicalbasis:

[ a(y)
~a(x)=(l—L~ )k

X (I + Ix i12t L ~ (1 ~ y

and to note that thereis a sufficiently large positive integerk suchthat ~a(x)

canbe written in the form:

f(x)
~a(x)=(I—L~ )kX (1 +11x112y

for everypositive integerr, wherethe functionf
7 is continuousandbounded,and

it suffices then to apply the formula (6-b) of lemma 2 so as to obtain:

Pj(x)fr(x)
.~a(x)= ~ U

5 (finite sum),
(1 +11x112)r

where the functions P~(x) are polynomials of degreenot greater than 2k, k

being not depending from r, and it sufficesthen to apply theorem 2.

REMARK 3. (9M(E) and (9~(E)are not containedin (9’
5(E) (see §7).
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PROPOSITION 10. Let A be a real number, thena distribution Tof ~‘(E) belongs
to51 ‘(E) if andonlj’ if T * ~ belongsto (9M(E)foreveryfunction ~ of ~(E).

The proof of this proposition is similar to that of the theoremVI. 2°(chapter

VII, p.241)of [12].

PROPOSITION11. Let A be a real number and let T bea distribution of ~

then the two following propertiesare equivalent:

1) T*~,CU2(E).VpC~(E)

2) Tcan be written in theform:

T= ~ Ly5f~ (finite sunl),

wherethefunctionsf~belongto L2(E).

Under tilese hypotheses,T belongsto51’(E) and T * ~ belongs to U2(E) for

everyfunction ~ of 51(E).

Proof We prove this propositionwith similar argumentsto those usedin the
proof of the theorem XXV (chapter VI) of [12]. Indeed, hypothesis 2) clearly

implies that TC 51’(E). Let us endow 51(E) with the thopology induced by

the family of seminormsp
1(p)= LJp~2for every index J, where II 112 denotes

the norm of the elementsof L
2(E,hz). Then T is continuousfor this topology.

Let B be the set of the functions a C ~ (E) such that la 112 ~ 1, B is densein the

unit ball of L2(E). Then,for every function p of 51(E), we have:

(11) supI(T*~~,a)l=supI(T,~*a)I<+oo
c,~B ~‘ oEB

since the set of the functions ~ * a, a C B is aboundedsubsetof 51(E) for the

topology previously induced in 51(E). Indeed,from the formula (9-b) of propo-
sition 3, and from the well known properties of the twisted convolution of

functions (see [4]), we deduce:

~ a) 112 ~ II L,,~’~ll
1IJa 112 ~ II Lj~II1.

Then, formula (11) implies that T ~ C L
2(E).

Conversely, let us supposethat T * ~ C L2(E), VpC ~(E). then we deduce

from the formula:

a* T*~(0)=(a* T.p)=(T*c,&)

that for every function ~ of ~(E), we have: sup (a * T, ~ < + oc. The set of
oRB ~
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the distributions a * T, aEB is then a boundedsubsetof ~‘(E). Let us use
lemma 10, and let SOC ~m(E) with a compactsupport in B(0, 1) (m chosen

as in lemma 10). Then,on a neighborhoodof zero with compact closure, the

distributions a * T * p, a C B are equal to continuous functions, uniformly
boundedon this neighborhood.By considering the values of thesefunctions
at zero,we obtain the formula:

supI(T * p ~) <+ oc,
oRB ~

It follows that T * pC U2(E).

Then, as in the proof of theorem 2. it suffices to use the formula (VJ.6.22)

of [12] to obtain proposition 11.

6. WEYL TRANSFORMS OF THE DISTRIBUTIONS OF (9~
12(E).BOUNDED

OPERATORS OF II

The purpose of this section is to characterizethe symbolsof the operators

of ~ ll-I~,) as well as the symbols of the boundedoperatorsof IH. where

Il-I is the Hilbert spaceof an irreducible unitary representationof theWeyl group

associatedwith h ~/rU. For this purpose,we can take the representationof the

Weyl groupon U
2(IR~’),definedby formula (4). Let us keepin mind that IH~=

= 51(IR’) in this case.

Let us first note that for all u, vC II-, we have:

(12) (op(7)~I7r(—hx,0) v) = T~
2~~.0(x)

We will usethe following lemmas.

LEMMA 11. Let U be a tempereddistribution of 51’(IR’) and u be a function of

51(IR’), then the function j3(p) = (L(q), ~‘P~ u(q)), p, q C lR
t andthedistribu-

tion ~ (uL) (where ~denotes the usual Fourier transform on IRE’) belong to

thespace(9MO’~) andare equal.

Proof Indeed, for every SO C 51(fl~l) we have:

(~(uL),SO)=(L(q),u(q) e1P~.SO(p)dm(p))=

= p(p) (L(q), u(q) ~-~ipq) dm(p)
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wheredm(p)= (2ir)_l/2 dp. The inversionunderthe integralsign is justified by

usingthestructureof tempereddistributions. U

LEMMA 12. Let U be a tempereddistribution of S/”(IR”) such that, for every

function u of 51(IR’), the functionf(x) = L(ir(hx, 0)u) belongsto51(E), then

U belongsto 51(IR’).

Proof Indeed,if x = q + p, we have:

h
(13) f(q,p)= ~L(q’),exp —i —pq+pq’ ‘u(q’+hq)

2

where f(q, p) C 51(E). It is clear that f(o, p) = (L(q’), ~ ‘ u(q’)) belongs

to .ff(IR”). and from lemma 11, we deduce:

.3~(uL)= * L C 51(R’) Vu C .9°(IR’)

(~3t~denotes here the usual Fourier transform and * denotesthe usual convolution

product). ThenL C (9~(1R’),soLE (9M(IR’). We then deducefrom formula(l3)
and from the Fourier inversion formula with respect to q’, that:

I h
h(q,q’)=L(q’)u(q’+hq)= jexp I q’p+ —pq f(q,p)dm(p)

J . 2

belongs to51(~21).Then u(o) L(q’) = h(_ ~ , q’) E51(~).We completethe

proofby choosingu C 51(IR’) suchthat u(o) ~ U.

THEOREM3. Let T be a tempereddistribution of 5/’ ‘(E), then op(T) belongs
to 51(IH, IH) if and only if Tbelongs to (9,

12(E). And in this case,foreu’ery

admissiblesymbolS,So Tis an admissiblesyboland wehave:

,op(SoT)= op (5) op (7).

Proof Indeed, if TE (9,12(E). we deducefrom formula (12) and from lemma

12 that op(fluC1H,~,VuEIH . It follows from the closed graph theorem

that op (7) is continuousof lI-I,,, into itself.

Conservely, if op (7’) C ~ 1H,~). formula(12) becomes:

(14) Xop(I)uu T~2XUV’

We then have T h12 SO C 51(E)for every function ‘p belonging to the dense linear

subspace.9’ of 51(E) of the functionswritten in the form:
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~ ~.=[~(~u.®TY.)i (finitesum),

where tip, U
1 C 51(R

1)andwhere / ~ is definedby formula (5). Furthermore,we

deducefrom the continuity of op (7) that the mapping

~ u.® -÷Z op (7) u
1 ®ii,~ (finite sum)

is a continuous linear map of the space51(lR”) ®51(IR
1) into itself, if this space

is endowed with the ir topology (see [13). chapter 43) which is equal to the

topology inducedby that of 51(lR21) (see[13]. proof of theorem5 1-6, p. 531).

~ being an isomorphismof 51(E)ontoitself, we then deducefrom the following
sequenceof continuouslinearmaps:

= ~ x~.-~ ® -~~ °~(flu
1 ®‘~ E XOPiUJ,~ = (Th~2SO)

that P —~T~’2p is a continuouslinear map of 51(equippedwith the topology

induced by that of51(E)) into51(E).This map can be extendedto a continuous
linear map of51(E) into itself. We then obtain T~2p C51(E),V ‘p C,9’°(E)and

theproof is complete. U

By using proposition 8, we clearly deduce from theorem 3, the following

corollary:

COROLLARY 2. Let T be a tempereddistribution of 51’(E),then the operator

op (7’) belongsto Sf’ (lU, IU) if and only if T belongsto the space l
9~/h(E).

REMARK. We deduce from [13], proposition 50.4, that op(7) belongs to

9’(51(1R1), 51(IR’)) if and only if its kernelbelongsto 51’(~,’)~ (fl~1)So. we

obtain the characterizationof the kernelsof the elementsof (9,
72(E), previously

establishedin [11], theorem1.

THEOREM4. A tempereddistribution T of51’(E) is an admissible symbolfor

the Weyltransformation if and only if h/2~ belongsto L
2(E) for everyfunc-

tion p of 51(E).

REMARK. If T is an admissiblesymbol,the linear map ‘p -÷ T~ p is then conti-

nuousof51(E)into L2(E).

Proof Indeed, let us suppose that T is an admissiblesymbol, then op (7’) Ii C

C Ill, V u C Il-I. Formula (14) (which still holds in this case) and lemma 1 show
that Th/2 p C L2(E), V p C5/’ The operator op (7) being continuous of51(1R1)

into L2(lR’) and the map:
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~ u
1 ® i3~-+ ~ op(T) U1 0i~

being therefore continuousof 51(IR’5 ® 51(Jp
1) (endowed with the ir topology

which is identical with the topology induced bythatof 51(1R21))into L2(lR1Y~

®L2(IR’) (equippedwith the ir topology), we deduce from Lemma 1 that the

map p -* Th2~ is continuousof 51 (equipped with the topology induced by

that of,9’(E)~into L2(E) and therefore can be extendedto a continuouslinear

mapof51(E) into L2(E). ThenT ‘pE L2(E), V’p C 51(E).
Conversely, let us supposethat T h/~‘pC L2(E), V’p C 51(E).Let U ~ U be a

function of 51(IR”). Let us considerthe boundedoperatorA of L2(1R~’)defined

by: Au = (v u) _—~ , U C L2(1R1). The kernel of this operator belonging to
u

51(E). its symbol f alsobelongsto 51(E) andTh/*
2 fCL

2(E). Then,op(Tof) =

= op(T)A is aboundedoperatorofL2(1R1)and op(7)u = op(Tof)uCL2(lR’).

We obtainedop (fl(IH~)C Il-I andT is thenan admissiblesymbol.

By using lemma 9 and proposition 11, we obtain the following corollary:

COROLLARY 3. A tempereddistribution T of51’(E) is an admissiblesymbol

for the Weyl transformation if and only if one of the two following equivalent

propertiesis satisfied:

1) T~’pEL2(E),V’pC ~3(E)

2) T canbe written in theform:

~ UJ~’~’fJ (finite sum),

wherethefunctionsf,,belongto L2(E).

REMARK. Let usnote that if A * U. ,~o UI’ = A U”5 o

Our purposeis now to characterizethe symbols of the boundedoperators

of Iii.

DEFINITION 3. A tempereddistribution T of51’(E) is calleda boundedA-convo-
lution operator of L2(E) if and only if T * p belongsto L2(E)for everyfunction
p of51(E) and if there is a nonnegativereal numberM such that T ~~Il

2 ~
~ M ~Ii2 for everyfunction ‘p of51(E).

We denoteby T the lower boundof thenumbersM satisfyingthe preceding

condition.
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THEOREM 5. The boundedoperatorsof III are the Weyltransformsof the tempe-
red distributions T of 51 ‘(E) whose Fourier transformsare the boundedh/2-

-convolutionoperatorsof L
2(E), andwe have op (7’)11 = T~.

This result wasannouncedin [8]. Let us note that the numberA in the defini-

tion of the twisted convolutionproductin [8], is replacedby — A in this paper.

Proof Let us prove theorem5. Every boundedoperatorA of WI has a symbol

TC ,9”(E). It is known that the Weyl transformsof the elementsof L2(E) are

theHilbert-Schmidtoperatorsof IH andthat:

lop (f) IIHS h 1”211f 112
where II IIHS denotes the Hilbert-Schmidtnorm of these operators.1ff C 51(E),

op (f) and op (Tof) = A op (f) are Hilbert-Schmidt operatorsand we have:

lIop(T0f)llHs=IIA op(f)IiHs~llAlllIop(f)llHs
where IA is the norm of the bounded operatorsA. It follows that To f as

well as T h/2~ belong to L2(E) and that ~h/2f 112 ~ IA II llfIl
2~Then, 7’ is a

boundedh/2-convolutionoperatorof L
2(E) which satisfiesIi ~‘lL.~<llA

Conversely,if T is a bounded11/2-convolutionoperatorcfL2(E), then accord-

ing to theorem 4, T is an admissiblesymbol and we deducefrom formula (14)
and from formula (1), lemma I, that:

op (flu II ‘liv II ~ll~ ‘~ u ‘liv II. Vu, v C ff1.

Then,op (7) is boundedandsatisfies~op (7) ~ TIlE.

REMARK. If T is an isometric 11/2-convolutionoperator of L2(E), then op (7)
is an isometricoperatorof IH.

We can define in every casethe twisted convolutionof two boundedh/2-

-convolutionoperatorsS and T of L2(E) as the Fourier transformof the symbol
of the boundedoperator op (5) op (7). So, we have the following corollary:

COROLLARY 4. The space of the bounded11/2-convolutionoperatorsof L2(E),

equippedwith the twisted convolution product associatedwith 11/2 and with

the norm is a Banach algebra isometric to the algebra of the bounded

operators of lH.

By using lemma 9, we deduce from theorem 5, the corollary:
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COROLLARY 5. The boundedoperatorsof WI are the Weyl transformsof the

bounded 2/h-convolution operators of L2(E) and we have: op (T) =

= (2/i hi )‘~T~,.

REMARK. It follows from the formulas op (7) = op (T*) and T~’p= ~

and from theorem5, that every left boundedA-convolutionoperator ofL2(E)
is alsoa right boundedA-convolutionoperatorofL2(E).

If ‘p belongs to 5/’(E), op(p) is a trace classoperator(see [5], theorem7),

Indeed,if ‘pE 51(E), the kernel of the operatorop (p) belongsto 51(~21) and
it is easyto seethat op (SO) is a continuouslinearmap of L2(IR”) into ,9~(lRl).

The naturalinjection of 51(IR1) into L2(1R1) being nuclear, it follows that op (‘p)
is a nuclear operatorof L2(JFJ) into itself and thereforeis a trace classoperator
(see [13]. chapters48 and50).We havethe proposition:

PROPOSITION12. Wigner transformsof theboundedoperators.

If A is a boundedoperator of WI, its symbolT is given by (T, ~p)= Ii trace

(A op (‘p))for everyfunctionSO of5/(E).

Proof Indeed, for every function p of 51(E), A op (so)= op (To’p) is a trace

class operator,Then, the Fourier transform T~ ~ of its symbol belongs to

L2(E) and is continuous(in fact, it canbe written in the form: T = f h/2

f, g L2(E)). (see [5], section 2) andwe havetrace(op (To p)) = h T h/2 ~ (0).

It sufficesthereforeto apply proposition3, formula 9-a.

7. APPLICATION TO STAR EXPONENTIALS

The purpose of this section is to apply the preceding results, so as to show that
the Weyl transforms of the star exponentials obtained in [9]. theorem 1, form

one parametergroups of unitary operators.We will use the notationsof [9].
Let T(x) = ~ where A is a real symmetric matrix with respectto a

basisof E. This matrix is consideredas a linear map of E into its dualE’. Let us

denoteby v the linear map of E into E’ definedby v(x)= —i~w,((i~w.y)=

= w(x,y)), Forevery function’pof 51(E), we have:

T ‘p(x) = e11~~(e~”Y~ . SO(Y))(2(A—

where ,~pdenotes the usual Fourier transformof p, consideredasa functionin
E’. Then,by usingcorollaries 2, 3 and5, as well as theremarkfollowing theorem
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5, we obtain the following proposition, where detA denotesthe determinant

of the linearmapA.

PROPOSITION13. Let T(x) = e
1~’~,where A is a real symmetric matrix. If

det (A — is different from zero, then op (7) is a boundedoperator of WI

suchthat op (7) (lU,,,) C WI,,, whichsatisfiestheformula:

—1/2

iiop(fluli=ihi~ det A—— lullh

for every vectoru of U.

If det (A — is equalto zero, then 7’ is not an admissiblesymbol.

Let us note that with respect to a canonical basis of E (that is a basis of

the form (es,ei-) such that w(e~, eT) = 1, the other componentsbeing equal to

zero) and with respect to the dual basis of E’, the matrix of the linear map v

is equalto the matrix denotedby A in [9]. Let us note that trace( AA) = 0

and that: det cosh(tAA)I 1 det (tanh(t A A) —I) = 1; we then deducefrom

proposltlon 13 that the starexponentialsobtainedin [9]. theorem1. are bounded

operatorsof WI, which are isometric (it will follow from proposition 14. that

they are unitary), and such that the imagesof WI,,, under these operatorsare

containedin lH,,,. In fact, thesestarexponentialsbelongto

Let us note that the right handside of the formula giving thevalueof exp*tX.

in the theorem I of [9], is definedfor all realnumberst if theeigenvaluesof AA

arenotpurely imaginary.It remainsto prove that:

exp* sX o exp* tX = exp* (s + t)X.

The proofof this result requiresthefollowing lemmas:

LEMMA 13. Let f and g be two functions of &M(E) such that

exp 2 ~- w(x, y) is continuous and slowly increasing at infinity, where .~ is

the usual Fourier transformation on E X E. Let us supposethat f belongs to
org belongsto l~h(E), then fog is definedandsatisfiestheformula:

fog(x) = (2/h)21.~(f(x)g(y)exp 2 — w(x.Y))(_ v(x), — — v(x)).

Proof This lemmais easilydeducedfrom the integral formula of the starproduct
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(proposition 9), by introducing the factor exp~--iIx 112/n2 so as to changethe

orderof integration, using the Fubini’s theorem,and then by taking the limit

as n tendsto infinity, with the help of the Lebesgue’sdominatedconvergence

theorem.

LEMMA 14. If d is an invertible real symmetricmatrix with n rows and n co-

lumnsandif f(x) = e~ x) then:

iT,

exp i(a—f3)—
4

(15) ~f(x)= exp ——(d’xlx)
2fh21 det ~ l~ 4

where a is the number of positive eigenvaiuesand ~ the number of negative

eigenvaluesof the matrix d, and where ~ denotestheusualFourier tranfor-

fliation.

This lemmais obtainedby a straightforwardcomputation.

It is now easyto obtain the following proposition.

PROPOSITION14. Let X = (Ax ix), where A is a real symmetricmatrix, then:

exp’1’ sX o exp* tX = exp* (5 + t) X

(s and t are supposedsufficiently small if one of theeigenvaluesof A A is purely
imaginary).

Proof Indeed, let us set f~(x)= exp i(A
0x x). where A~= A tanh(s~).

We have:

~(x) ~ exp(2 h’ w(x, .~‘))= exp i(d~~(x+ .v) lx + y)

with:

A
A —11 1 A U tanh(5AA) I

= — A11 A~ = h U A ( —I tanh(ti~4)

Let us use the well known lemma:
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LEMMA 15, If A, B, CandDarefournx n matricessuchthat CandDcommute,
then:

A B
det ~ D = det (AD —BC).

Then we obtain: det = h”
4~’ det ~ where

~ = I + tanh (sA A) tanh (tAA)

tanh(tAA)D~A —D~A
S.S,t D~A tanh(sAA)D~ ‘A

Proposition 14 is then deducedfrom lemmas 13 and 14, from the formulas:

cosh (s + t) A A = cosh(s A A) ‘cosh(t A A) D
5~

tanh(s + t) A A = (tanh (s AA) + tanh(t A A))D~’

and from the fact that a = /3 in formula (15) applied to d~. Indeed,this last
property is easily verified for s = t = U (it sufficesto apply lemma 15), for the

other values of s and t, it suffices to apply the proposition 19 (chapterXII)

of[14]. ‘

Finally, we provea propositionwhich is requiredto justify the formal compu-

tations in [91.Let v(x) = —i~w be the isomorphismof E onto E’ previously
introduced, this isomorphismis extendedin a natural way to an isomorphism
of the tensoralgebra over E onto the tensor algebraover E’. Let A = v’(w)

(see [11) and let us respectivelydenoteby A/k andby W/k the componentsof the
2-tensorA and of the 2-form w with respectto a basis of E and to the dual

basisofE’. We haveE A. w = — 6. and

k jk kI /1

(16) ~A.kwklA. =—A.

Let us note that,with respect to a canonicalbasisof E (and to the dual basis

of E’), the matrices(w/k) and (A/k) are both equal to the matrix denotedby
A in [9]. Let us consider the bidifferential operators(see [11 and [9]) defined

for f, g C ~‘ (E) by:

P~(f,g)= ~ A/k .. A/k ‘D..f’D~~g.

Wehave the proposition:
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PROPOSITION 15. Let f andg be two tempereddistributions of 51(E) suchthat

one of themat least is a polynomial on E, then fog is definedand satisfiesthe

formula:

1 ih~
(17) fogfg+ ~ — . — P(f,g)

n=1 n! 2 ‘~

(there is only a finite numberof nonzerotermsin this series).

Proof This result was independentlyannouncedin [11] without details about

the proof.Ourproofrequiresthe following lemmas:

LEMMA 16. Let f and g be two tempereddistributions of 51 ‘(E) such thatf and

~ have compact supports, then fog is definedand satisfies formula (17), the

correspondingseriesconverging in 51(E).

This lemma was establishedin [101. Let us recall its proof. The distributions

f and~ havingcompactsupports,we have:

~/
2~~SO) (f(x)®~(Y).exP(_i—

Let usconsiderthe seriesexpansionof the form:

11 1 11
exp —i— w(x,y) ‘p(x+y)= ~ — —i— w(x,y) ‘p(x+j)

2 ~.0n! 2

and let us note that this seriesas well as its partial derivativesof all order converge

uniformly on each compactsubset of E for eachfunction ‘p of ~(E). This is in

fact immediately deducedfrom the propertiesof power series.It follows that

the precedingseriesis convergentin thespace~(E x E), So. we obtain the weak

convergencein ~‘(E) and then the weak convergenceand therefore the strong

convergencein 51(E) of theseries:

+ ~ (_~~ )~.1k, . W.k ‘~‘~ . . . x1f(x)) * .. . )~~)‘~

where * denotesthe usual convolutionproduct. Lemma 16 is then obtainedby

applying the symplectic Fourier transformationwith the help of the formulas:

~(x.f) = i ~ A.k and .~(f.g) = I * ~ (this last formula still holds for the
/ k I axk
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symplecticFouriertransformation)andby usingformula (16).

LEMMA 17. IfS is a tempereddistribution of 51(E), if f is a functionof (~‘M(E)

andif’p is afunction of 51(E). the,iwe ha~’e:

(P~(S.f).SO) = (S.P~(f.so))

(P~(f,S),~p)= (5, P0(’p, f)).

The proofof this lemmais obvious.
Let us return to the proofof proposition I 5 and let us supposefor example

that g is a polynomial, then ,~having a compactsupport,belongsto
VA C IR and also belongsto ~ ~,(E). (Let us note that (Q~(E)= (.~~(E)).Then

fog is defined and by applying lemma 16, we obtain for every function ‘p of

51(E) suchthat ~ C~(E):
(fog’p) = (~(f* ~ ~ ~ ~ h/2 ~ =

=(f.~oso)=~f.g’p+~_(_)P(g,’p)~.

Then, according to lemma 17, we see that the both hand sidesof formula (17)

are equalon a densesubsetof51(E) and thereforeare equal.(Let us recall that
thereis only a finite numberof nonzerotermsin series(17)). U

CONCLUSION

Let us recall the main results of this paper

SE51’(E) SE51~E) op(S~(1FL,1H,)

Starproduct Twisted convolutionproduct productof operators
SoT s~t op(S)op(7)

Admissiblesymbols
{s C5/’(E), S2151(L)C L

2(E)} ~ ~ .9”(E), s 51(h) C L2(L)} ..9’(U, II)

111,,,,)

2 Ii
bounded— .convolution bounded— - convolution boundedoperators

Ii 2 ofIH
operators of L2(E) operatorsof L2(E)
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