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Abstract. It is well known that the Weyl transformation in a phase space R¥,
transforms the elements of S(R¥) in trace class operators and the elements of
LYR?) in the Hilbert-Schmidt operators of the Hilbert space L2(RY), this fact
leads to a general method of quantization suggested by E. Wigner and J.E. Moyal
and developed by M. Flato, A. Lichnerowicz, C. Fronsdal, D. Sternheimer and
F. Bayen for an arbitrary symplectic manifold, known under the name of star-
-product method. In this context, it is important to study the Weyl transforms
of the tempered distributions on the phase space and that of the star-exponentials
which give the spectrum in this process of quantization.

We analyse here the relations between the star-product, the twisted convolution
product and the Weyl transformation of tempered distributions. We introduce
symplectic differential operators which permit us to study the structure of the spa-
ce O N+ 0, (similar to the space O) of the left (twisted) convolution operators
of S (R?!) which permit to define the twisted convolution product in the space
& (R2), and the structures of the admissible symbols for the Weyl transformation
(i.e. the domain of the Weyl transformation). We prove that the bounded operators
of L(R!) are exactly the Weyl transforms of the bounded (twisted) convolution
operators of L(IR?). We give an expression of the integral formula of the star
product in terms of twisted convolution products which is valid in the most general
case. The unitary representations of the Heisenberg group play an important
role here.
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INTRODUCTION

The Weyl transformation is a one-to-one mapping /'~ op (/) of a large family
of functions or distributions (including polynomials) on the phase space R =
= {qj. p/} I <j </ of a non-relativistic system with / degrees of freedom onto a
large class of operators of the Hilbert space IH = L%(IR'), including those which
are Hilbert-Schmidt (The Hilbert-Schmidt operators are the Weyl transforms of
the square integrable functions on the phase space), such that:

h 9
op(l)=1, op(g)=q;. op(p)=— —.
i aq].
The Weyl transform is a usual quantization process.

The star product fog of two functions or distributions f and g on the phase
space is the symbol of the operator op (/) op (g) (when defined}. As shown by
J.E. Moyal, the commutator for the star product appears (at least formally) as
an asymptotic expansion which is a deformation with parameter i(h/2) of the
Poisson bracket on the phase space. This fact leads to consider quantum mechanic
as a theory on the space of functions or distributions over the phase space.
The equations of motion in the Heisenberg picture are then obtained from the
classical equations of motion by using that deformation of the Poisson bracket
(see [1]). In this context, M. Flato, A. Lichnerowicz, C. Fronsdal, D. Sternhei-
mer and F. Bayen have constructed a new quantization process on an arbitrary
symplectic manifold by considering deformations of the ordinary product and
of the Poisson bracket of the symplectic structure. They have computed the
spectrum of some Hamiltonians by considering a Fourier-Dirichlet expansion
of their star-exponentials.

In this paper, we study properties of the Weyl transformation which relates
the usual quantization process and the star-product method in the case of the
phase space IR%, and of the twisted convolution product noted *, which is the
Fourier transform of the star product. Many authors have been working on
these questions. Nevertheless, many problems were not solved, in particular
the determination of the domain of the Weyl transformation (what we call
the space of the admissible symbols, which is not the space CQ'C, as we show
in section 7), the characterization of the symbols of the bounded operators
on the Hilbert space IH, the determination of the structure of the left convolu-
tion operators of V(lel) (introduced by M.A. Antonets in order to define the
twisted convolution product in the space % '(IR?')) and the structure of the
admissible symbols.

In section 1, we recall the usual definition of the Weyl transformation.
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In section 2, we show that the Weyl transformation is in fact a one-to-one
mapping from the space & '(IR¥) onto the space Z(F(R'). F'(R") of conti-
nuous linear maps of # (IR!) into ¥ '(IRY). We call admissible symbols the tempc-
red distributions T of '(R%) such that op (TH( (R c H=L*(R'), ie.
those that give operators in the Hilbert space IH.

In section 3, we introduce a new kind of differential operators that we call
svmplectic differential operators. These differential operators will permit us to
treat the twisted convolution product in a manner similar to that used for the
ordinary convolution product, and will permit us to determine the structures
of the left convolution operators of . (IR¥) and of the admissible symbols of
the Weyl transformation.

In section 4, we study the Fourier transforms of twisted convolution products
and we give an integral formula for the star product in terms of twisted convolu-
tion products, which is valid in the most general case. We see in particular in this
section, that the Fourier transform of a twisted convolution product for A # 0
is no more an ordinary product of functions, but a twisted convolution product
for 1/A. The notion of space (C’M is thus lost in this case.

In section 5. we study the structures of the left convolution operators of
F(R). We obtain a theorem of structure similar to the theorem of structure
of the space CO'C. where the ordinary differential operators are replaced by the
symplectic ones.

In section 6, we study the Weyl transforms of the left convolution operators
of ¥ (IR%). We give a characterization of the admissible symbols in terms of
twisted convolution products and the structure of these symbols. The admissi-
ble symbols are in fact square integrable functions on the phase space and finite
sums of symplectic derivatives of square integrable functions. We introduce the
notion of bounded (twisted) convolution operators of the space L2(IR*!) and we
show that the bounded operators of the Hilbert space H = LX(IR') are the Weyl
transforms of these bounded convolution operators.

In section 7, we give some practical applications of these results. We show
in particular that the Weyl transforms of the star exponentials of the homoge-
neous polynomials of degree two on the phase space give rise to one-parameter
groups of unitary operators.

1. GENERAL RESULTS AND NOTATIONS

Let £ =1R?¥ be the phase space of a nonrelativistic quantum system with /
degrees of freedom, whose points are denoted by:x = (qj.pi). I<j<lorx=

i
=qg+p. Llet w= Z dq]./\dp]. be a symplectic form on £ and let du(x) =
i=1
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= W dg -dp be the measure associated with the symplectic form w. Let

us consider the Weyl group associated with £ (see [2]), W = E x R endowed
with the composition law:

(xla Sl)(xz, sz) = (xl +x2,51 +S2+ 1/2 w(xl,xz))

Let us note that this group is isomorphic to the Heisenberg group. The Lie algebra
w of this group is isomorphic to the space £ x IR endowed with the Lie bracket:

[(xp 89, (X5 5,01 = (0, w(xy, x,))

and we have: exp (x, s) = (x, s).

The center of the Weyl group is the set of elements (0, s); and with every
nonzero real number h is associated an equivalence class of irreducible unitary
representations of the Weyl group, satisfying the formula:

7(0,s) = exp{(—is/h) I.

Let us consider the symplectic Fourier transformation in the space % (F) of
infinitely differentiable functions, rapidly decreasing at infinity (see [5]), defined
by:

Fo(x) = ¢(x) =fei°’(x‘y) “p(y) du(y).

Then % ! = % and this Fourier transformation can be extended to an isometry
of the space L2(E, u) of square-integrable functions with respect to the measure
u onto itself. The symplectic Fourier transform of the tempered distribution 7
of F(E) is defined by: (ZFT, )= (T, F¢), where ¢(x) = ¢(— x). Let us note
that: (% v)" = Z ().

REMARK. To every locally integrable function f(x) in E is associated the measure
Fx)-du(x).

The Weyl transforms (see [1] and [2]) of the functions ¢ of (E) are bounded
operators of HH, defined by op (¢) = ¢(x) n(—hx, 0) du(x), where 7 is an
irreducible unitary representation of W, associated with h # 0. The star product
poy of the functions ¢ and ¢ of #(E) is defined by (see [1]): op(po ¥) =

=op(p) -op (¥) and we have: F(po¥) = @ nTz v, where h>/'=2 denotes the

twisted convolution product associated with 5
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Let us note that these notations may be different from those used in the
references quoted in this paper. The usual notations in distribution theory used
in this paper are those of [12]. Unless explicitly mentioned, the signs % and
¢ will denote through this paper the symplectic Fourier transformation.

2. WEYL TRANSFORMS OF TEMPERED DISTRIBUTIONS

Let 7 be an irreducible unitary representation of the Weyl group, belonging
to the equivalence class associated with h # 0. Let us denote by H the Hilbert
space of this representation and by IH_ the space of differentiable vectors. Let
us set: x, (x)=(7(—hx,0)u|v) for v and v in H, where (|) denotes the
scalar pro&uct in H. Let us denote by |u | the norm of the vector u of H. We
have the lemma:

LEMMA 1.
1) For all vectors u and v of H, the coefficient X, , belongs to L*(E) and
satisfies the formula:

W j'xu.umizdu(x) o

2) For all vectorsu and vofH_, the coefficient X, , belongs to SF(E).

Let us consider on H_ the topology defined by the family of seminorms
(see [7D:

(2) p,, () =|dm(%U)u|

for all % belonging to the universal enveloping algebra of w, where dr is the
differential of w. Then, H_ is isomorphic to F(RY and u,v—>x, , is a conti-
nuous bilinear map of H_ x IH_ into & (E).

We can now define the Weyl transform of a tempered distribution T € & '(E)
by setting forallu, ve H_:

(3) (op () u |v) = (T, x, )

Let us note that IH_ being isomorphic to S (RY) (for the structures of topologi-
cal vector spaces), its dual space H' is isomorphic to & '(IR') and we set for
fe &' (R andu € LR :(f|u) = {f. 7). We have the proposition:

PROPOSITION 1. The Weyl transformation is a one to one mapping ot the space
S (E) of tempered distributions in E onto the space L(H_, H) of continuous
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linear maps of H_ into its dual H_ .

DEFINITION 1. A temnpered distribution T of £ '(E) is called an admissible symbol
Jor the Weyl transformation if op (T)(H_) C H.

Let us note that IH being isomorphic to Lz(]Rl). is a subspace of IH. By using
the closed graph theorem (see [13], chapter 17), we see that, if T is an admissible
symbol, then op (7) is a continuous linear map of H_ into IH. So, we have the
proposition:

PROPOSITION 2. The Weyl transformation establishes a one to one mapping of
the space of admissible symbols onto the space £ (H_, H) of continuous linear
maps of H_ into H.

In particular, every bounded operator of H is the Wexl transform of only one
admissible svmbol.

Proof. Let us now prove lemma 1 and proposition 1. Since the coefficients of two
unitary equivalent representations are equal and since for such two representa-
tions, there is a one to one correspondence between the spaces of differentiable
vectors of these representations which is a topological isomorphism for the topo-
logies induced by the seminorms (2), we can consider the representation of W
on the space L2(IR") equipped with the scalar product: (u lv) = fu(q’)LW)dq’,
(dq' is the Lebesgue’s measure on IR’), defined by:

, J ar ,
4) ”(X»S)H(CI)=CXP[—;<S+~: +pq

&

Ju(q' +q)

1
where x=q+p,qgp= 2 q; p;- The space of the differentiable vectors of this
j=1

representation is F(IRY) (see [7]) and by using the remark following the theorem
XVIII (chapter VI, p. 190) of [12], it is easy to prove that the topology defined
by the family of seminorms (2) is identical with the usual topology of F(RY).
Then, foru andv e L2(IRY) we have:

h N
X, ,(X) = exp (—i ) qp) je"’" u(q@' —hg)v(g) dq".

From the properties of the partial Fourier transformation (with respect to q"),
we deduce formula (1). Furthermore, let us consider the topological isomor-
phism & of & (F) onto itself defined by:
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h .
(5 Eé(q,p)=e><p(—i;qp) fe”"’ §(¢' —hq.q") dq’

we have Xy o= @ (u ® V). The proof of lemma 1 is then complete.

Furthermore, it is clear that u. T, is a continuous bilinear map of
FL(RYH x L(RY) into L(E). Proposition 1 is easily deduced from the formula
(T, Xy o) = (& (T),u®T)y where ! & is the transpose of & , by noticing that
V(]Ri) is a nuclear Frechet space and by using the proposition 50-7 and the
corollary of theorem 51-6 of [13]. Let us note that ‘& (f") is the kernel of the
operator op (7). L]

We deduce from the proposition 50-4 of [13] the topological isomorphism:
F'(R) 8 LY(R') = L(L(R), LAR).
Then, we have the corollary:

COROLLARY 1. The admissible symbols for the Wevl transformation are the
tempered distributions in E whose kernels belong to & "(Rh & LYRY).

3. TWISTED CONVOLUTION PRODUCT

The twisted convolution of two functions f and g in E, defined for every
real number A by:

fx8(x) =Ie"“""” fx—1)g(») du(»)

was introduced in [4] Let us note for every index J =@, ..., i) :{J|=r and

af
ox. ...0x,

i J

D, =
It will be very useful to introduce the symplectic differential operators associa-
ted with the real number X and defined by:
dyp
L o(x)= — +idw (e;.x) p(x)
! ox. /
i

and L} = Ll’.‘- L. L;‘- where (x;) is a coordinate system with respect to a basis
)] r

(e’.) in E£. Let us note that the differential operators L;‘ do not commute in general.
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IfT€ D'(E)and p € D(E) (resp. T € ¥ '(E) and o € FL(E)), we have:
(LT, 0= (= DT, Ly o)

where J = (j,, ..., i) ifJ =, ....]7).

These symplectic differential operators will permit us to treat the twisted
convolution product in a manner similar to that used for the ordinary convolu-
tion product. It seems that these differential operators should play an important
role in generalizations to other groups.

LEMMA 2. For every real number X #+ 0, we have:

(6-2) L}=D,+ Y  ayx) Dy
1ISI<IJ1

(6-b) D,y=L}+ ) L)byx)
IS

(6-¢) D,=L}+ ) Cy0L)
ISI<IJI

where as(x), bS(x) and Cs(x) are polynomials of degree not greater than |J |

Proof. Indeed. the first formula is easily obtained by induction. To obtain
the second and third formulas, let us first note that if « € £(£) and T € 2 '(E),
we have:

du
LMNa)=al}T+ — - T
/ ! ox.
]
and the formulas (6-b) and (6-c) are then obtained by induction. .

It is easy to show that, for every real number A, an infinitely differentiable
function ¢ in E belongs to %(EF) if and only if, for every nonnegative integer
r and every index J:

(N Pry(@) = sup (1+]x | [Lyo() | <+

and it is easy to prove by using lemma 2, that the topology defined on¥(E)
by these seminorms is identical with the usual topology on & (E).

The twisted convolution (with respect to A) of two distributions S and 7, one
of them at least having a compact support, is defined for ¢ € Z(£) by (see [5]):
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(8) (S *T, )= (S(x), 0(x)),
with:
0(x) =(T(p), e &N - p(x + p)).

To define this twisted convolution product in%'(E), it is sufficient that the
mapping ¢ - 0 be continuous of F#(F) intoitself. This property is easily verified
if T=f€ ¥(F), since we have in this case: § = ft w and since the twisted convo-
lution of two functions of ¥ (E) is continuous. Then, if S € &'(E) and f € ¥(E),
the twisted convolution S ifis detined and we have the proposition:

PROPOSITION 3. If S belongs to'(E) and f belongs to(E), then S * f belongs
to O,(E) and is given by:

(9-a) S*[(x) = (S(»), e - f(x —y))

and satisfies the formulas:

(9-b) L}‘(ij)=(L}‘S)’;f

(9-0) LNS*f)=S* Ly f

Proof. Indeed, we have:

(S*f,0)= <S(x),je"““""'” fy—x)e(y) du(y)) =

=fw(y) (S(x), e A . f(y —x)) du(y).

To justify the preceding inversion under the integral sign, it suffices to note
that:

L;\'(e—i)\w(x.y) f(y —x)) = _efiAw(x,y) . (Ll)\f)() —x)
j

and that in view of the theorem VI (chapter VII) of [12] and in view of Lemma
2, formula (6-b), every tempered distribution can be written in the form:
S = ? LJ”‘((I +||x||2)k h;(x)) (finite sum), where the functions h; are conti-

nuous and bounded. We then obtain:
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(S*fpy= ; f(l +|IXI|2)"h,(x)d#(x)[e“‘”"“” C(LEO —x)e(n)du(p).

So as to inverse the order of integration, let us note that we have for all integers
r,s > 0:

(L+]x»*

POy —x P P

|1+ | x [DF R,y —x) 0(3) | <K
and then, let us use the following lemma (see {3], lemma 2.3.2, p. 113):

LEMMA 3. Forall vectors x and y of E, we have:

(L [x 4y <200 +x DA+ [,

We deduce from this lemma that the preceding quantity under the integral
sign is majorized by 2k, (1 +|x |)* (1 +|y |» ¢, which is summable for
sufficiently large values of r and s —r. A similar computation shows that
S f\fe Oy (E).

We obtain the formula (9-c¢) by writing:

L;jx(S x f(X) =(S(p), eMED (LN x —p)).
To obtain the formula (9-b), let us first note that:
L;’,(e“w‘x’” S =) ==L NS flx =)
and then, let us write:
LNS £ ))X) = =(S(), LM (e &P - fx —y)) =
=Ly S(), e - fx —p)). =

PROPOSITION 4. The twisted convolution S * I is hypocontinuous of ¥'(E) x
x L (F) into ¥L'(E).

Proof. This proposition follows from the formula (S tf, p) = (S,fﬂ; ), by
using the continuity of the twisted convolution product in &'(E) and by using
the fact that every bounded set of &' (E) is equicontinuous. ]

Following [6], let us introduce the space (D)'\(E) of left convolution operators

of L(E).
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DEFINITION 2. Let N be a real number. The space @;(E) of left convolution
operators of F(E) is the set of the tempered distributions T in E such that
T * g belongs to & (E) for every function ¢ of & (E).

Letusset for 7€ F(E). g€ F(E)yand h € E:
T,e(x)=px =M1, T.0y=(T,7_, )

Then we have the proposition:

PROPOSITION 5.
1) A tempered distribution T in E belongs to € 'A(E) if and only if. for every
nonnegative integer r, the set of the distributions T,, h € E, where:

T,0x) = (1 + | |2 7_, [e"he @0 T(x)]
is a bounded set of ¥ (E).

2) For every distribution T of (C;(E), the map ¢ > T 4 is continuous of S(EY
into itself.

Proof. Indeed, if T € C’/'K(E), we have for every integer r = 0 and every function
v of F(E):

sup (1 +||x”2)r1T*«p(.\')}<+oo
x<kE A

1t follows that for every function ¢ € ¥ (F), we have:

sup (1 +[x |2 [¢7_ (e E T, o) | <+ oo .
xcF

It follows therefore that the set of the distributions 7 . x € E, being weakly
bounded in ¥ '(£), is strongly bounded in & '(£).

Conversely, let us suppose that the set of the tempered distributions 7 . x € £
is a bounded set of/"(E), then by replacing ¢ by L;Np in the preceding formula
and by using the formula (9-c) of proposition 3, we obtain p;f‘(T * @) <+ oo,
where p;} is defined by formula (7). It follows that T & C‘;\(E). Futhermore,
the set of the distributions 7, x € E being equicontinuous in.#"'(£). we see
that pr:j‘(up) tends to zero if ¢ tends to zero in.¥(£). Proposition 5 is then
proved. n

REMARK. T € (f/‘;\(E) if and onlv if T€ CC‘;(E) and we have: (Ti\ﬁ)v = f»;@

If Te (0;\(E) and S ¥ '(E). then S * T is defined. If one at least of these
distributions have a compact support, the expressions S(x) and 7(») can be
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exchanged in the right hand side of formula (8). so, in the general case, we are
led to introduce the space of right convolution operators of #(E) (with respect
to A). Let us note that ¢ iS =S * ¢ then it follows that the right convolution
operators of (E) for \, are nothing else but the elements of COLA(E). IfSe (O'_,\(E)
and Te ¥'(E), then S * T is still defined and we have:

(10) (S % T,0) =(T(»),(Sx), e MED - p(x +y))).

So, we have the theorem:

THEOREM 1. Let S and T be two tempered distributions in E, such that S belongs
to O (E) or Tbelongs to O E), then S x T is defined and satisfies the formulas:
1 (S*T @) =S, T*w)—(S T*¢>sze(0 (£)
2) <S*T w0y =«(T,S * np)-—(T S * cp)sze(O (E)
The rzght hand sides of these formulas being equal 1f simultaneously S belongs to
(OL}\(E) and T belongs to @;\(E),

Proof. Indeed. it suffices to prove that the right hand sides of formulas (8) and
(10) are equal if simultaneously S & (9'_7\(E) and T € (9;\(E). This fact is easily
shown if one of these distributions belongs to $(E), it suffices in this case to
consider the structure of the tempered distributions (see [12]). In the general
case, we will use the following lemmas:

LEMMA 4. Existence of an approximation of the identity in the algebra (S(E), f\).

Let (p,) be a sequence of functions Of9(E) such that, for every nonnegative
integer n 19, 20, ¢, (x)=01if x> 1/n and [y (x) du(x) = 1. Then, for every
function p of S(E), the sequence (g, * @) converges to ¢ in F(E).

This lemma is proved in a manner similar to that used in the case of the usual
convolution product, by using formula (9-¢).

LEMMA 5. Let (¢n) be a sequence of functions of D (E) satisfying the hypotheses
of lemma 4, then for every tempered distribution S and every real number N, the
sequence (S * ©,) converges to S in FNE).

The proof of this lemma is an immediate consequence of lemma 4 and of the
fact that every weakly convergent sequence in . '(E) is strongly convergent.

LEMMA 6. Let S be a tempered distribution in E and let ¢ and  be two func-
tions of L (E), then for every real number N, we have.
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S x ¥ =98 =* * .
(Sxe)xy (oY)

The proof of this lemma is obvious.

Let us now return to the proof of theorem 1. Let S€ ', (E)and T € o' ()
and let (y,) be a sequence of functions of 9D(E) satisfying the hypotheses of
lemma 4. Then according to lemma 3, (S * P T * ) tends to (S, T* g)asn
tends to infinity. Furthermore, this first expresswn 1s equal to (T (S = w ) * ¢>
since S * \ Pn € ¥ (F);thenaccordingto lemmas 4 and 6 and to proposmon 5 2),
this last expressmn tends to (T S * @) Theorem 1 is then proved. n

PROPOSITION 6. If T belongs to O (E), then L].”T belongs to () (E); and if T
belongs to O (E) or if S belongs to 0" |(E), we have:

1) L)‘(S*T) (L)‘S)*T

")L)‘(S*T) S*L )‘T

3)(L AS)*T S*LT

This proposition follows from proposition 3 and from the formula(L/."}‘T) ’; Q=
=T * L].*go for ¢ EAE), which is easy to prove.

- oT
REMARK. If T & (9;(E). then T, v and P(x)T belong to @;(E), where P(x)
X

is a polynomial. Furthermore, T and T* (T*(x) = T(—x)) belong to (DL}\(E)
and we have: S* T = T*{S_z :S‘—_*A T

PROPOSITION 7. The twisted convolution (for N) of tempered distriburions is
defined if all of them, except at most one of themdenoted by S, belong to (0;}\(E)
these being on the right side of S belonging to O|(E), the other ones belonging
to (9'_’\(E), When it is defined, the twisted convolution of tempered distributions
is associative.

Proof. The prove the associativity, we need the following lemmas:

LEMMA 7.
1) If S and T belong to O,(E), then S x T belongs to O0)(E); and for every
function g of F(E), we have:

S*;(T’;tp)=(5’;77’;s0-

2) Similarly, if S and T belong to COLA(E), we have for every function ¢ of
F(E):

(¢=;S)§T=¢§(S§D.



244 J.M. MAILLARD

The proof of this lemma is obvious.

LEMMA 8. If S belongs to O (E), T belongs to (' (E) and ¢ belongs to S(E),
we have:

(Srp)xT=5*(px D).

Indeed, let us use an approximation of the identity in #(E) (see lemma 4),
then S * 9, and ¢ * T belong to.A(E). By using lemma 6 for A and — A, we obtain:

Sxle,*(pxD]=(Sxg) *x(p*T) =
=[x ) sl *T=[S*(p,x )] * T
Lemma 8 is then obtained by taking the limit as » tends to infinity, with the
help of lemma 4 and proposition 5.2).

Let us now return to the proof of proposition 7. Let us consider for example
the case: S, € 0" (E), S,€ O,(E) and S e %'(E). Then by using theorem 1.
we obtain:

(S % 8) % 8), @) =(S; * 5.5, x @) =(S. (S, * ) x §))
on one hand and:
(§2(S%8). @ =(S*8,),pxSP=(5,5,*(v*5))

on the other hand.
We then use lemma 8 to complete the proof. n

4. FOURIER TRANSFORM OF THE TWISTED CONVOLUTION PRODUCT.
INTEGRAL FORMULA OF THE STAR PRODUCT

Let us set for every real number A+ 0 and for every T €% (E) : T*(x) =
by
=|N\|?T- T(\x). Let us note that (T p) = <T(x),«p(i) y if ¢ ESAE). We have
the lemma:
LEMMA 9. For every tempered distribution T in E, every function ¢ of AE) and

every real number \ #+ 0, we have:

T * §(x) = T P00,

Proof. Indeed, we have:
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-~

X
T _ - Twix.y) . y
Tl;k)\ (X)) =<T(y). e &,0( )\)>

and lemma 9 is obtained by replacing x by Ax. =

PROPOSITION 8. Let \ be a real number different from zero, then T belongs to
O (E) if and only if T and T*V* belong to O ’W\(E); and if T belongs to O, (E)
orif S belongs to 0" (E), we have:

G — ql/x r_— ¢ —1/xa
'/(S;tT) S 1/*AT SJ‘)\T '

Proof. Indeed, according to lemma 9. T € O, (E) if and only if Te CO'W(E)

and under this hypothesis we have:
(FS*T),py=(S.T*@)=Sx). T * pOx) =SV T x &
by A /A /A

(The formula (T*)"= 77" has been used). The first equality in proposition 8 is
obtained. Then, writing this first result in the form:

FT x¢)=T" @ for g€ FE),
we see that T belongs to (9;\(E) if and only if TY* and therefore also 7~ Y*

belong to (9l1/>\(E)* and if T € O} (E) we have:

G _ S gy SNy QA _4Q —1/x
(F(S*D),p)=(S, F(Txph=(S. T 1fA¢>‘<SlfxT Lo

A similar computation is done if 7& O, (E). by using the hypothesis S € ", (E).
The proof of proposition § is then complete. a

We deduce from proposition 8, that the star product So T is defined if S &
e (9L2/h (E) orif T € O}, (E). and we have the proposition:

PROPOSITION 9. Integral formula of the star product.
If S and T are two tempered distributions in E such that S belongs to (0’ 2/ (E)
or T belongs to O, (E), then S o T is defined and satisfies the formulas:

’

2/

o _ 7 ay-2/h
(SoT.py=1(S x T.@) "

21 i
) < Sx), < T()"),fexp (2 g wx—z,y —o)e@)du(z)>>

=] o

<S°T.~p>=(

In the second formula, S(x) and T(y) can be exchanged (or must be exchanged)

if S belongs to (9i2/h (E).
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Proof. Indeed, according to proposition 8, we have:
© = 72 3 7 = $ 7 D =
(SoT,p)=(F(S o D, oy=(FS, Th72 )
— F(T Y — “\—2/h
(S, f(Th;*2 ) =S, T2/*h (p)~ 7M.

IfTe O,

2/h(E), this formula becomes:

2\¥ i i
(SoT,p)= (;) <S(x), <T(y),exp2 -h—w(x,y)ﬁxp (— 2 ;1- w(x—y,2)|-e(2)du(z2)>>

Then, let us note that w(x,y) —w(x —y,z)=w(x —z,y —z) and the proof
is complete. »

5. STRUCTURE OF THE DISTRIBUTIONS OF THE SPACE 0, (E)

To study the structure of the distributions of (9;\(E). we will use a lemma
similar to the theorem XXII (chapter VI) of [12].

LEMMA 10. Let X\ be a real number and let B' be a bounded set of distributions
of D' (E), then for every open subset QL of E with compact closure, there is a
positive integer m such that, for every function a of@™ (E) with compact support
contained in the unit ball of E, the set of the distributions T] *a, 7; B’ is
equal on S to a uniformly bounded set of continuous functions.

Proof. We give here a direct proof of this lemma. Indeed, €2 is contained in
the ball B(0, R) with center at zero and radius R > 0. and there is an index J
such that the distributions 7; of B’ are equal on B(O,R + 1) to D, f] where the
functions f; are continuous with compact support in B(0, R + 2) and uniformly
majorized by a positive number M (see [12], chapter III). Then if m >|J |, for
every a €™ (E) with compact support in B(0, 1) and for every ¢ €D(E) with
compact support in B(0, R), we have:

(Tra,0)=(— 1)”']1;(96) du(X)ij,(e'““"“” ca(y —x) - e(y) du(p).
We obtain for x in B(0, R)

T *a(x)=(— 1)"'/f-(y)D g ED a(x —y)) du(y)
A j v
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it follows that 7; t a(x) is continuous on B(0,R) and that for x in B(0.R):

| T, % a(x) [ <Mu(B(O,R +2)), sup lD)_,(e“wW%a(x—y)) |. ]

XI<REVI<SR+2

THEOREM 2. Let N\ be a real number and let T be a distribution of %'(E). then
the following three properties are equivalent :
1) Te (9;\(E)
2 T*ype LE), Vo D(E)
3) For every nonnegative integer r, T can be written in the form:
[ (x)

T=%,L*— (finite sum),
TGPy

where the functions fJ are continuous and bounded on E.

Proof. Indeed. in view of the definition of (9;\(E), 1) implies 2). Furthermore,
it follows immediatly from 3) that T €%'(E) and that Tt\ p €L E) for every
¢ € FL(E). So the assertion: 3) implies 1) is proved. Let us prove now that 2)
implies 3). As in the proof of proposition 5, it follows from 2) that for every
integer r > 0, the set of the distributions 7,. h € E, with

T,(X)= (1 +|h|?Y 7_, [e™®D-T(x)],

is a bounded subset of 2'(E).

By using lemma 10, we see that there is an integer m > 0 such that, for every
function @ € 2™ (E) with compact support in B(0, 1), the set of the distributions
T, * o, he E is equal on B(0,1) to a set of continuous functions, uniformly
majorized by a positive number M. Let us note that:

[T”h(eixu(h‘x). T(x))] ,; o = T_h[e”‘“’(h"‘)' T,.}i a(x)]

then for every h € E, the distribution (1 + | h[?)" e/« ®*x) " T #* afx) is equal
on B(h, 1) to a continuous function majorized by M. It follows that Tﬂ; o is a
continuous function on F which satisfies the formula:

sup (1 +|x|>)|T* a(x)|<M.
xeFE A

Furthermore, we deduce from the formula (V1,6,22, p. 191) of [12] that
there is a sufficiently large positive integer ¥ and that there are a € 2"(E)
and £€ 2(E) with compact support in B(0, 1) such that A¥oa—& = 8. Let
us use now the formula (6-b) of lemma 2, we obtain: A¥ = ? LJ‘}‘(PJ(x)oz(.\'))_

where the functions Pj(x) are polynomials, then the functions Pj(x)oz(x) belong
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to2™(E) and we have:

T=Tx6= ,Z Tx Ly NPyx) a(x) = T &

Let us use now proposition 6,2), which still holds for the convolution in2"(£).
Theorem 2 is then proved. '

REMARK 1. The space £'(E) of distributions with compact support in E is con-
tained in COA(E) for every real number \. The space F(¢£'(E)) and in particular
the space of polynomials on E are contained in (9:\(E) for every real number
A#0.

To see that, it suffices to consider the structure of the distributions of §'(E)
(see [12], chapter III) and to apply theorem 2 and proposition 8.

REMARK 2. The space of infinitely differentiable functions in E such that there
is a positive integer m (depending from « but not from the index J), sucht that
for every index J, we have: | D a(x) <A, (1 + ”x[|2)’", is contained in O’ (E)
for every real number X # 0, as well as the Fourier transforms of these functions.

Proof. Indeed, it suffices to use the following formula which holds if we use a
canonical basis:

— . 1 [ a(y) }
Fax)=(1-A) ———— F|(1-4A) ——
U Ty dRETE

and to note that there is a sufficiently large positive integer k¥ such that & a(x)
can be written in the form:

1(x)
Fa(x) =(1-p ) ——r
(14| x ]2y

for every positive integer r, where the functionfr is continuous and bounded, and
it suffices then to apply the formula (6-b) of lemma 2 so as to obtain:

P (x)f.(x)
Fa(x) = L Ik Alitcaics (finite sum),
; Ty

where the functions P;(x) are polynomials of degree not greater than 2k, k
being not depending from r, and it suffices then to apply theorem 2. n

REMARK 3. (QM(E) and (Q'C(E) are not contained in O’ (E) (see §7).
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PROPOSITION 10. Let X be a real number, then a distribution T of %' (E) belongs
to L (Eyifandonly if T * ¢ belongs to O, (E) for every function g of % (E).

The proof of this proposition is similar to that of the theorem VI. 2° (chapter
VII, p. 241) of [12].

PROPOSITION 11. Let N be a real number and let T be a distribution of @'(E),
then the two following properties are equivalent:

D Txpe LYE), Yo D(E)

2) T can be written in the form:

T= Z L f, ( finite sum),

J

where the functions f, belong to L*(E).
Under these hypotheses, T belongs to'(E) and T 84 belongs to L*(E) for
every function g of L(E).

Proof. We prove this proposition with similar arguments to those used in the
proof of the theorem XXV (chapter VI) of {12]. Indeed, hypothesis 2) clearly
implies that 7€ S '(E). Let us endow &(E) with the thopology induced by
the family of seminorms p, (¢) = I L;\p ||2 for every index J, where || [|2 denotes
the norm. of the elements of L2(E, u). Then T is continuous for this topology.
Let B be the set of the functions « € 2 (E) such that | o ||2 < 1, B is dense in the
unit ball of L(E). Then, for every function ¢ of S(E). we have:

11 T*op )= T.¢ +
(1) aStng|< * .0 asgg|< Pra)|<+eo

since the set of the functions & *a, a € B is a bounded subset of F(E) for the
topology previously induced in %(F). Indeed, from the formula (9-b) of propo-
sition 3, and from the well known properties of the twisted convolution of
functions (see [4]), we deduce:

| L7@ % <Lyl el <[ L7,

Then, formula (11) implies that T * p € L%(E).
Conversely, let us suppose that T’; pe LYE), Vo & 2(F), then we deduce
from the formula:

a';T#;ap(O)=<a’:T.«p)=<T=;gp,a)

that for every function ¢ of Z(E). we have: sup j (o * T, p)| <+ oo. The set of
aE<EB
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the distributions « * T, a€ B is then a bounded subset of Z'(E). Let us use
lemma 10, and let p € P™(E) with a compact support in B(0, 1) (m chosen
as in lemma 10). Then, on a neighborhood of zero with compact closure, the
distributions oz’;T;ligo, o €B are equal to continuous functions, uniformly
bounded on this neighborhood. By considering the values of these functions
at zero, we obtain the formula:

sup [(T * @, &) | < + oo.
=71 A

It follows that T * p € LUE).
Then, as in the proof of theorem 2, it suffices to use the formula (V1.6.22)
of [12] to obtain proposition 11. L

6. WEYL TRANSFORMS OF THE DISTRIBUTIONS OF (9;‘/2(]3). BOUNDED
OPERATORS OF H

The purpose of this section is to characterize the symbols of the operators
of (H_,H_) as well as the symbols of the bounded operators of IH, where
IH is the Hilbert space of an irreducible unitary representation of the Weyl group
associated with h # 0. For this purpose, we can take the representation of the
Weyl group on L2(IR)), defined by formula (4). Let us keep in mind that H_ =
= %(RR) in this case.

Let us first note that for all u, v € IH_, we have:

(12) (op (N u|m(—hx, 0)v) =T » %, ().

We will use the following lemmas.

LEMMA 11. Let L be a tempered distribution of FL'(RY and u be a function of
F(RY), then the function B(p) = (L(q), e P - u(q)), p. q € R' and the distribu-
tion % (uL) (where % denotes the usual Fourier transform on RY) belong to

the space (0 M(IRI) and are equal.

Proof. Indeed, for every ¢ € F(IR'), we have:

(Ful),p)= <L(q), u(q)jE'i”"~s0(p) dm(p)> =

=/w(p) (L(q), u(q) e~ P8y dm(p)
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where dm(p) = Qm~i2. dp. The inversion under the integral sign is justified by
using the structure of tempered distributions. =

LEMMA 12. Let L be a tempered distribution of S (R such that, for every
function u of ¥ (RY), the function f(x)= L(w(hx, Q)u) belongs toF(E), then
L belongs to ¥ (IR}).

Proof. Indeed, if x = g + p, we have:

h
(13) flg.p)= < L(q", exp(—i(; pq + pq'))-u(q' +hq)

where f(q,p) € S(E). 1t is clear that f(o,p) =<(L(g"), e~ P? -u(g')) belongs
to & (IR"), and from lemma 11, we deduce:

Ful)=u*Le LR, VYue LR

( & denotes here the usual Fourier transform and * denotes the usual convolution
product). Then L € (Q'C(]RI), soLe (QM(IR’). We then deduce from formula (13)
and from the Fourier inversion formula with respect to ¢', that:

h
h(q,q') = L(g"u(q' + hq) =/eXp(i(q'p + Y pq) )~f(q,p) dm(p)

'

belongs to AAR?). Then u(o) L(g") = h(— _qg ,q') EAR!). We complete the

proof by choosing u € ¥ (IR") such that u(0) # 0. =

THEOREM 3. Let T be a tempered distribution of ¥ '(E), then op(T) belongs
to Y(IH“, H_) if and only if T belongs to (9;/2(E). And in this case, for every
admissible symbol S, S o T is an admissible sybol and we have:

,op(SoT)=op(S)op (D).

Proof. Indeed, if Te (9;/2(E). we deduce from formula (12) and from lemma
12 that op(NueH_, VuecHH_. It follows from the closed graph theorem
that op (7) is continuous of IH_ into itself.

Conservely, if op (7D € L (H_, H_). formula (12) becomes:

(14) iop(T)u.vz T;,Tz Xy v

We then have Th72¢6 SF(E) forevery function ¢ belonging to the dense linear
subspace £ of F(E) of the functions written in the form:
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ZX, .. =lCEuev)] (finite sum),
o Y I

where U, v € F(R') and where & is defined by formula (5). Furthermore, we
deduce from the continuity of op (T) that the mapping

z U@ ﬁ] - Z op(T) U ®ij (finite sum)

is a continuous linear map of the space #(IR") e #(IR") into itself, if this space
is endowed with the m topology (see [13]. chapter 43) which is equal to the
topology induced by that of % (IR?) (see [13], proof of theorem 51-6, p. 531).
@ being an isomorphism of #(E) ontoitself, we then deduce from the following
sequence of continuous linear maps:

v=Zx, ”/_»Zu/@vf_)zoP(T) ui®vi_>zxop(7')“/v”i:(Th72 2

that ¢ — Tn72‘p is a continuous linear map ofg’(equipped with the topology
induced by that of A(E)) into S (E). This map can be extended to a continuous
linear map of (F) into itself. We then obtain Th72w€V(E). Y ¢ €EAE) and
the proof is complete. ]

By using proposition 8, we clearly deduce from theorem 3, the following
corollary:

COROLLARY 2. Let T be a tempered distribution of '(E),then the operator
op (T) belongs to & (H_,MH_) if and only if T belongs to the space (Qﬁ/h(E).

REMARK. We deduce from {[13], proposition 50.4, that op(T) belongs to
L(FL R, LRY) if and only if its kernel belongs to &' (R)) & #(IR!). So. we
obtain the characterization of the kernels of the elements of @n/z(E)’ previously
established in [11], theorem 1.

THEOREM 4. A tempered distribution T of '(E) is an admissible symbol for
the Weyl transformation if and only if T * ,¥ belongs to LXE) for every func-
tion ¢ o5 L(E).

REMARK. If T is an admissible symbol, the linear map ¢ — T * 59 is then conti-
nuous of £ (F) into L*(E).

Proof. Indeed, let us suppose that 7 is an admissible symbol, then op(7T) u &
€H, YuelH_. Formula (14) (which still holds in this case) and lemma 1 show
that Th* w€L2(E) chey’ The operator op (7) being continuous of L(IRY)
into L2(IR?) and the map:
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Zuj®ﬁj—+20p(T)u].®Uj

being therefore continuous of V(IR’) ® Y(]R’) (endowed with the 7 topology
which is identical with the topology induced by that of #(IR?))into L*(R))®
e LY(IRY) (equipped with the 7 topology), we deduce from Lemma 1 that the
map ¢ —> T « 5% is continuous of & (equipped with the topology induced by
that of S”(E)g into L2(E) and therefore can be extended to a continuous linear
map of #(E) into LXE). Then T A pELYE), Vo€ L(E).

Conversely, let us suppose that T 7 eeL¥E), Vo F(E)Let u#0 be a
function of&”(lR’) Let us consider the bounded operator A of LZ(IR’) defined

by: Av = (v|u) veLz(IRI). The kernel of this operator belonging to

|u H2 ’

S(E). its symbol f also belongs to ¥ (E) and T * fe L¥E). Then, op(Tof)=
= op(T) A4 is a bounded operator of L>(IRY) and op (Du=op(Tof)ue LY RY.
We obtained op (7)(IH_) C H and T is then an admissible symbol. u

By using lemma 9 and proposition 11, we obtain the following corollary:

COROLLARY 3. A tempered distribution T of LN(E) is an admissible symbol
for the Weyl transformation if and only if one of the two following equivalent
properties is satisfied :

) T3 e€ LYE), Yy € D(E)

2) T can be written in the form:

T= Z Ly 2/“]’] (finite sum),
7

where the functions fJ belong to LX(E).
REMARK. Let usnote that if \# 0, Fo L} =2 Lo F

Our purpose is now to characterize the symbols of the bounded operators
of H.

DEFINITION 3. A tempered distribution T of ¥ (E) is called a bounded \-convo-
lution operator of LX(E) if and only if T * ¢ belongs to LX(E) for every function
¢ of #(E) and if there is a nonnegative real number M such that | T"{“’"z <
<M | |, for every function ¢ of SF(E).

We denote by || 7|, the lower bound of the numbers M satisfying the preceding
condition.
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THEOREM 5. The bounded operators of H are the Weyl transforms of the tempe-
red distributions T of & '(E) whose Fourier transforms are the bounded h/2-
-convolution operators of L*(E), and we have lop (D |=|T],-

This result was announced in [8]. Let us note that the number X in the defini-
tion of the twisted convolution product in {8], is replaced by — X in this paper.

Proof. Let us prove theorem 5. Every bounded operator 4 of IH has a symbol
Te $'(E). It is known that the Weyl transforms of the elements of L2(E) are
the Hilbert-Schmidt operators of IH and that:

| op (1) lgs =11 I"”Ilfllz

where | "Hs denotes the Hilbert-Schmidt norm of these operators. If f€ ¥ (E),
op(f) and op(Tef)=A op(f) are Hilbert-Schmidt operators and we have:

lop (T of) s =14 op () |gs <[4 [ 0P (f) | s

where ||A | is the norm of the bounded operators A. It follows that Tof as
well as T % f belong to L7(E) and that [T Sl<[ Al Then. T is a
bounded h/2-convolution operator of L2(E) Wthh satlsfles || T|| <A H

Conversely, if T is a bounded h/2-convolution operator cf LA(E). then accord-
ing to theorem 4, T is an admissible symbol and we deduce from formula (14)
and from formula (1), lemma 1, that:

lop (Dyu|-fo|<|T| [u] -|v]. VYu.veH,
Then, op (7) is bounded and satisfies | op (T) || <] f‘"c =

REMARK. If T is an isometric B 2-convolution operator of LXE), then op (T)
is an isometric operator of H.

We can define in every case the twisted convolution of two bounded h/2-
-convolution operators .S and T of LA(E) as the Fourier transform of the symbol
of the bounded operator op (S) op (7). So, we have the following corollary:

COROLLARY 4. The space of the bounded h|2-convolution operators of L*(E),
equipped with the twisted convolution product associated with h[2 and with
the norm || |, is a Banach algebra isometric to the algebra of the bounded
operators of H.

By using lemma 9, we deduce from theorem 5, the corollary:
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COROLLARY 5. The bounded operators of H are the Weyl transforms of the
bounded 2/h-convolution operators of L*E) and we have: [op ()| =
=Q/n| T,

REMARK. It follows from the formulas op (T) = op (T*) and Txo=9¢* 7
and from theorem 5, that every left bounded \-convolution operator of L2(E)
is also a right bounded \-convolution operator of LX(E).

If ¢ belongs to #(E), op(y) is a trace class operator (see [5], theorem 7),
Indeed, if p € £(E), the kernel of the operator op () belongs to ¥ (IR?) and
it is easy to see that op(y) is a continuous linear map of L3(IRY) into S (R)).
The natural injection of V(IR’) into L2(]R’) being nuclear, it follows that op (¢)
is a nuclear operator of L2(IR!) into itself and therefore is a trace class operator
(see [13], chapters 48 and 50). We have the proposition:

PROPOSITION 12. Wigner transforms of the bounded operators.
If A is a bounded operator of H, its symbol T is given by (T, ¢) =|h |’ trace
(A4 op () for every function g of S (E).

Proof. Indeed, for every function ¢ of ¥ (E), Aop(¢)=op(Toy) is a trace
class operator. Then, the Fourier transform f‘h72¢ of its symPol belongs to
L2(E) and is continuous (in fact, it can be written in the form: Th72 cé =fh72 g,
f, g LYE)). (see [5], section 2) and we have trace (op (T o ¢)) = |h|~! Th=l/=2 ¢ (0).
It suffices therefore to apply proposition 3, formula 9-a. =

7. APPLICATION TO STAR EXPONENTIALS

The purpose of this section is to apply the preceding results, so as to show that
the Weyl transforms of the star exponentials obtained in [9], theorem 1, form
one parameter groups of unitary operators. We will use the notations of [9].

Let T(x)=e!™*'® where A is a real symmetric matrix with respect to a
basis of E. This matrix is considered as a linear map of E into its dual E'. Let us
denote by v the linear map of E into E’ defined by v(x) = —iw, (i w =
= w(x, ). For every function ¢ of & (E), we have:

v
T o(x) = e!X19 F(eldry). w(y))(Z(A - g)m)

where % ¢ denotes the usual Fourier transform of ¢, considered as a function in
E’'. Then, by using corollaries 2, 3 and 5, as well as the remark following theorem
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S, we obtain the following proposition, where det 4 denotes the determinant
of the linear map A4.
PROPOSITION 13. Let T(x) = e!*9D \ohere 4 is a real symmetric matrix. If

v
det (A — }T) is different from zero, then op (T) is a bounded operator of H
such that op (T) (H_) C H_, which satisfies the formula:

p 12
det (A — —)
h

Jop (Duf=|n|" el

for every vector u of H.

' v
If det (A - ;1—) is equal to zero, then T is not an admissible symbol.

Let us note that with respect to a canonical basis of £ (that is a basis of
the form (e;, e5) such that w(e, e;) = I, the other components being equal to
zero) and with respect to the dual basis of E', the matrix of the linear map v
is equal to the matrix denoted by A in [9]. Let us note that trace (A 4)=0
and that: | det cosh (/A4)]-|det (tanh (+ A 4) —1) |=1; we then deduce from
proposition 13 that the star exponentials obtained in [9]. theorem 1. are bounded
operators of IH, which are isometric (it will follow from proposition 14, that
they are unitary), and such that the images of IH_ under these operators are
contained in IH_ . In fact, these star exponentials belong to (QIz/n(E)~

Let us note that the right hand side of the formula giving the value of exp*tX,
in the theorem ! of [9], is defined for all real numbers ¢ if the eigenvalues of A4
are not purely imaginary. It remains to prove that:

exp* sX oexp* tX = exp* (s + N X.

The proof of this result requires the following lemmas:

LEMMA 13. Let f and g be two functions of (DM(E) such that ?(f(x)g(y)

i .
exp 2 Py w(x,y)| is continuous and slowly increasing at infinity, where % is

the usual Fourier transformation on E X E. Let us suppose that f belongs to
(9'_2/h(E) or g belongs to O ’zlh(E), then fog is defined and satisfies the formula:

i 2 2
fog(x)=(2/n)¥ «?(f(X)g(y) exp 2 - w(x,y)) (; v(x), — - V(x)).

Proof. This lemma is easily deduced from the integral formula of the star product
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(proposition 9), by introducing the factor exp (—| x [*n? so as to change the
order of integration, using the Fubini’s theorem, and then by taking the limit
as n tends to infinity, with the help of the Lebesgue’s dominated convergence
theorem. »

LEMMA 14. If & is an invertible real symmetric matrix with n rows and n co-
lumns and if f(x) = el*¥>X'9 then:

-
eXp(i(a—B)—
7 : ( s
(15) Ff(x)= ————— exp|— — (& x|
22| det o |12 T3 |

where o is the number of positive eigenvalues and f the number of negative
eigenvalues of the matrix &/ , and where ¥ denotes the usual Fourier transfor-
mation.

This lemma is obtained by a straightforward computation.
It is now easy to obtain the following proposition.

PROPOSITION 14. Let X = (Ax]x), where A is a real symmetric matrix. then:
exp* sXoexp¥tX =exp* s+ X

(s and t are supposed sufficiently small if one of the eigenvalues of A A is purely
imaginary).

1
Proof. Indeed, let us set fs'(x)z expi(As,\‘[x). where A = ™ A tanh (sAA4).

We have:
i
1,0 £(») exp(2 T w(x,y)) =expi(H  (x+1)|x+1)
with:
A
Ax —
h 1 (A 0) tanh (sAA4) 1
d = = — ( .
5.t A h V0 A —1 tanh (1AA)
—— 4,
h

Let us use the well known lemma:
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LEMMA 15. If A, B, C and D are four n x n matrices such that C and D commute,
then:

A B

det( c D )= det (AD — BC).

Then we obtain: det & | = h¥ det D, ,, where

D, , =1+ tanh (s A A) tanh (1A4)
tanh (1 AA4) D} A —D;}A
A y=—h 1 , , 1
s D;t A tanh(s AA) D, - A

Proposition 14 is then deduced from lemmas 13 and 14, from the formulas:
cosh(s +t)AA =cosh(s AA) -cosh(t A A) D“
tanh(s + 1) A A = (tanh (s A A) + tanh (t A 4)) Ds’}

and from the fact that o =8 in formula (15) applied to szs ‘- Indeed, this last
property is easily verified for s =t = 0 (it suffices to apply lemma 15), for the
other values of s and ¢, it suffices to apply the proposition 19 (chapter XII)

of [14]. - [
Finally, we prove a proposition which is required to justify the formal compu-
tations in [9]. Let v(x) = —i w be the isomorphism of E onto E' previously

introduced, this isomorphism is extended in a natural way to an isomorphism
of the tensor algebra over E onto the tensor algebra over E'. Let A = v Hw)
(see [1]) and let us respectively denote by A].k and by Wi the components of the
2-tensor A and of the 2-form w with respect to a basis of £ and to the dual

basis of E'. We have £ A]k Wy, = 6].1 and

(16) Z ik Wy A Z_A]'m

Let us note that, with respect to a canonical basis of £ (and to the dual basis
of E'), the matrices (wjk) and (A].k) are both equal to the matrix denoted by
A in [9]. Let us consider the bidifferential operators (see [1]} and [9]) defined
forf, g€ €~ (E) by:

2
P(f.8= Z Ajlkl"'Aj k 'Djlu.jnf'Dk]...k g

. n *n
Jrkg=1

We have the proposition:
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PROPOSITION 15. Let f and g be two tempered distributions of & '(FE) such that
one of them at least is a polynomial on E, then fo g is defined and satisfies the
formula:

= 1 ihy\"
(17) feg=fo+) — (7) P(f.8)

n=1 1

(there is only a finite number of nonzero terms in this series).

Proof. This result was independently announced in [11] without details about
the proof. Our proof requires the following lemmas:

LEMMA 16. Let f and g be two tempered distributions of & '(E) such thatfand
g have compact supports, then fog is defined and satisfies formula (17), the
corresponding series converging in &'(E).

This lemma was established in [10]. Let us recall its proof. The distributions
fand £ having compact supports, we have:

) R h
U x8wr= < f(x)® g(y). exp(—i 3 w(XsJ’))sO(X +y)> :

Let us consider the series expansion of the form:

h - 1 h n
exp(—i — m(x,y))so(x +y)= Z — (—i — w(x,y)) elx+3y)
2 a=o 1! 2

and let us note that this series as well as its partial derivatives of all order converge
uniformly on each compact subset of E for each function ¢ of §(E). This is in
fact immediately deduced from the properties of power series. It follows that
the preceding series is convergent in the space £(E x E). So, we obtain the weak
convergence in £'(E) and then the weak convergence and therefore the strong
convergence in &' (E) of the series:

= 1 h\" .
+ — (—z —) wfx"l .. 'wj,,k,, '(x].l .. .xj;lf(.\')) * U}‘x .. .)}(”g(_\'))

where * denotes the usual convolution product. Lemma 16 is then obtained by
applying the symplectic Fourier transformation with the help of the formulas:

) A .
9*_(x].f) = i% Ay a—j and % (f-g) = f=* ¢ (this last formula stil] holds for the
x
k
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symplectic Fourier transformation) and by using formula (16).

LEMMA 17. If § is a tempered distribution of '(E). if f is a function of Oy (E)
and if v is a function of F(E). then we have:

(PAS.F).0y=(S.P(f. )
(B (f.S). )= (S, P (.1 )).

The proof of this lemma is obvious.

Let us return to the proof of proposition 15 and let us suppose for example
that g is a polynomial, then § having a compact support. belongs to ¢ (E),
YA€ R and also belongs to ¢ (E). (Let us note that O (E) = C/(E)). Then
fog is defined and by applying lemma 16, we obtain for every function ¢ of
S(E) such that ¢ € D (E):

(fog.o)=(%F (f*g)sp:fg7¢>>

1 /ih
=<f,.go~p>=<f,gsp+z -~ (l )P(g sp)>
n=1 :

Then, according to lemma 17, we see that the both hand sides of formula (17)
are equal on a dense subset of #(£) and therefore are equal. (Let us recall that
there is only a finite number of nonzero terms in series (17)). L]

CONCLUSION

Let us recall the main results of this paper

SeLE) SesE) op(S) € L(H,., H.)
Star product Twisted convolution product product of operators
SeoT ST op (S) ~op(T)

Admissible symbols

[SefE), 53 SEVCLEL |{S€S(E),S x SE) CLE)] L(H_ H)

h/2
O'pE) 1B LM, H,)
2 h
bounded — -convolution bounded — -convolution bounded operators

of H
operators of L%(E) operators of L*(E)
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